
1

Writing a Custom Add-On Code Generator for Polled State
Machine Applications

Previous topics in this column dealt with low-level applications, accompanied by assembly
language code. This month we deviate from this trend and present code written entirely in C. We
stick to our practice, however, of dealing with multi-facetted applications. In this case, we look at
one of the basic programming styles, namely polled state machines, and experiment with writing
our own add-on code generator to automatically produce skeletal programs. The concepts are
illustrated by a simple example, and as always, the source code for both the example and the
code generator are available for downloading (see [1]). We hope that the topic will be beneficial to
those who would like to write their own add-on code generators as well as those who may
consider writing their next application in the structure of a polled state machine.

Software Reusability
Code generators are a recent effort in the quest for code reusability. There have always been
ways to reuse software. Perhaps the most basic form of software reusability is when a
programmer develops a personal style or approach to software development. But such personal
experience is not easily transferred from one programmer to the next. Another common form of
software reusability is the time-honored “cut-and-paste” approach. Here, code segments are
copied from an existing application. “Cut-and-paste” often requires some amount of code
modification, which leads to errors. Similarly, modular structured programming promotes placing
the unit operations in distinct standard functions. For instance, a library may contain functions to
operate the analog-to-digital converter. Modern compiler technologies acknowledge this practice
and include linkers and library utilities as fundamental components. Many programmers and
institutions develop their own set of functions and package them as libraries. There has been
strong third-party support, especially for the PC platform, to develop libraries. Using library
functions is appropriate especially when there are only a few ways of doing a set of standard
tasks. Consider, for example, a library for RS-232 communications. The library must support half-
duplex and full-duplex modes, or say, for hardware handshaking (DTR/CTS) versus software
handshaking (XON/XOFF). You may develop (or buy) libraries with configurable functions. That
is, the initialization function takes parameters that describe the various operating modes. This
approach is convenient for the programmer, since there are only a few powerful configurable
functions to learn. On the other hand, these functions are usually somewhat larger than needed
since they include code to support all possible operating modes. The alternative is to write
separate functions to support the different operating modes. This produces tight code, but is
somewhat more difficult for the programmer who now has to study and understand a large set of
functions so that the most appropriate function may be put to use.

Code generators present a good approach to create specific functions for user-specified operating
modes. This approach combines the best of both worlds: similar to setting function parameters to
select the operating modes, the programmer selects the options from the code generator. The
programmer need not learn all the possible functions that may be produced. He simply needs to
follow the code generator dialogs and select the desired options. Then the code generator
produces the streamlined code. This approach does provide the best of both worlds -- but at a
higher cost to the developer of the library. Instead of writing (and often distributing source code) of
a set of functions, the library developer must produce a user interface to extract the settings from
the programmer. Then, he must program enough smarts to produce the desired code. This is
probably why there are many more libraries than code generators. Code generators for embedded
controllers have usually been concerned with initialization and register configuration. A code
generator is doubtlessly more efficient and accurate in selecting the various special-function

2

register bits, for example, to initialize a peripheral. Siemens’ DAvE [2] is a good example of such a
code generator. Although somewhat more involved than writing libraries, it is nevertheless
possible to write custom code generators. As mentioned, programmers tend to develop their
personal style over time. Often, this style reflects more than preferences in esthetics or syntactic
idiosyncrasies. It extends to the way the programmer approaches a given application. A custom
code generator may capture the programmer’s approach in a powerful way. Parallel to the
proliferation of libraries, perhaps future programmers or institutions will be more involved in writing
their own code generators to ensure uniformity across their products.

The beta release of Rigel Corporation’s Reads166 V3.10 allows users to write and install their own
code generators into the integrated development environment (IDE). This provides a good
opportunity to try some of the concepts we mentioned. Specifically, we will develop a code
generator to implement a well-known software architecture, namely a polled state machine.

State Machines as a Software Architecture
We use the term “software architecture” to denote the essence of a software application, those
structural features that remain when the specifics of the application are stripped away. Although
there are countless embedded control applications, the software architectures these applications
adopt comprise a much smaller set. This statement is even more valid if you view all applications
developed by the same programmer or same institution. More mechanically, we view the software
architecture as a generic framework that could be decorated with the specifics of a given
application. We would like to automate the generation of this framework for a given application.
Our effort is similar to developing a template or style sheet commonly used by word processors
and presentation managers.

All embedded control applications share some common structural features. They all receive inputs
from their environment, process these inputs, and generate the appropriate outputs. Most of the
time there is a sequence of operations to be performed. It is not uncommon for this sequence to
be conditioned on some input. Hence, such a sequence is better depicted by a flowchart with
conditional branches rather than a simple list. Similarly, many operations have time constraints.
That is, a given operation must be completed in a specified time, or the controller needs to take
alternate action. If these times are very short, an interrupt-oriented architecture is perhaps the best
approach. On the other hand, if these times are long (in the order of hundreds of milliseconds),
the application program may simply cycle through, or poll, the inputs and produce the desired
outputs. We assume that our application is suitable for the polled approach. In general, the outputs
depend on the inputs as well as the current position in the sequence of operations.

We further formalize the idea of a flowchart and introduce a state machine. Mathematically
speaking, a state machine is a process based on a directed graph. The graph consists of a set of
nodes and a set of directed arcs that connect the nodes. Each node represents a state of the
system. The set of states is referred to as the state space. We use the term “transition” to refer to
a change in state. The sequence of operations is modeled by a process of transitions among the
states. The transitions are assumed instantaneous. The system may spend time only in states.
That is, we adopt the so-called “activity at node” model rather than an “activity on arc” model. For
sake of generality and flexibility, we partition the state activities into three categories: entry
activities, exit activities, and stay-in-state (residence) activities. Entry and exit activities are
performed when the process first enters or finally leaves the given state. The stay-in-state
activities are repeatedly performed while the process remains in a given state. Formalizing the
concept of states and transitions now allows us to condition the transitions only on the inputs. This
view is not only generic enough to be used in modeling a wide range of applications, but also
presents a convenient format for writing code.

3

In fact, the state machine has been a popular architecture not only as a software architecture, but
also in capturing user input in hardware design. Almost all CPLD (Complex Programmable Logic
Device) and FPGA (Field Programmable Gate Array) development tools, for example, allow the
user to define the functionality of the device by a state machine. (For an example, see Xilinx, Inc.
development tools [3]). There have been a few attempts to apply the state machine model to
general software development. A few years ago, I experimented with the product BetterState by
R-Active, which generated C++ and Visual Basic code. (BetterState is now supported by
Integrated Systems, Inc. A light version of BetterState may be downloaded off their website [4]).
These products have a graphical user interface where the states and the transitions are drawn on
screen. Then, by clicking on the states or transitions, application-specific information is input. Our
attempt to generating state machine code is much more modest. We limit our code to polling, in a
manner similar to most Programmable Logic Controllers (PLCs). Furthermore, we will simply
generate source code in the basic structure of a state machine. We will place comments, such as
“enter your code here…” to instruct the user to add application-specific code. In this sense, our
generator produces only a framework. Except for the state names, no application-specific code is
generated.

We implement the state machine in C. Each polling cycle starts by scanning the inputs. The next
state is determined by the current state and the inputs. Conceptually, we use two variables, say
sCurrent for the current state and sNext for the next state. The code that determines the next state
will typically be a list of conditional statements. If the choice of the next state depends more on the
inputs rather than the current state, we may adopt an input-oriented scan.

if(input01) sNext=S01;
 else if(input02) sNext=S02;
 else if(input03) sNext=S03;
 else sNext=S04;

On the other hand, if the choice of the next state depends more on the current state, we would
adopt a current-state-oriented scan. Consider, for example, a simple keypad that has an arrow
key that displays the next choice. Let the four states STATE00 through STATE03 correspond to
the four menu items and input00 correspond to a signal from the arrow key.

 switch(sCurrent)
 {
 case STATE00 : if(input00) sNext=STATE01; break;
 case STATE01 : if(input00) sNext=STATE02; break;
 case STATE02 : if(input00) sNext=STATE03; break;
 case STATE03 : if(input00) sNext=STATE00; break;
 }

Of course, in most cases, the conditions would be a bit more involved, involving many inputs.
Similarly, the next state would probably be dependent on both the current state and the inputs.
Consider the same example but with an additional pushbutton. Let the menu items corresponding
to STATE00 and STATE01 be grouped as submenu 1, and the other two as submenu 2. Let the
new pushbutton, represented by input01 toggle between the submenus. The following code
segment, which illustrates the hybrid structure, may be used to determine the next state.

 switch(sCurrent)
 {
 case STATE00 : if(input01) sNext=STATE02;

4

 else if(input00) sNext=STATE01;
 break;
 case STATE01 : if(input01) sNext=STATE03;
 else if(input00) sNext=STATE00;
 break;

 case STATE02 : if(input01) sNext=STATE00;
 else if(input00) sNext=STATE03;
 break;
 case STATE03 : if(input01) sNext=STATE01;
 else if(input00) sNext=STATE02;
 break;
 }

Each implementation eventually will carry out application-specific actions. Writing subroutines for
each specific action or activity is a good way to organize the software. Conceptually, these activity
functions are similar to interrupt service routines or event handler routines. The state-machine
code generator will produce skeletal code into which calls to the activity functions must be
inserted. In our model, activities take place at the nodes, or states. We introduce three standard
functions to be a part of the general framework: EnterState(), ExitState(), and StayInState(). Each
of these three standard functions takes a single parameter, which defines the associated state.
When a transition occurs, the state machine calls the function ExitState with its parameter set to
the current state. Then the function EnterState is called with its parameter set to the next state.
The polling cycle then ends with updating the current state to the next state. If the state does not
change during the polling cycle, i.e., if the next state is the same as the current state, we call the
function StayInState with its parameter set to the current state. These three functions allow us to
neatly place initialization and termination code in a well-defined and well-organized manner. Note
that it was a similar need that gave rise to the constructors and destructors in C++ classes.

Writing the Code Generator
The code generator is written in Microsoft Visual C++ following the guidelines given in Reads166
v3.10. In summary, when a C code wizard is dragged-and-dropped into a project, the integrated
development environment (IDE) calls the Reads166 code generator. This generator has a “Setup”
button that allows users to insert other code generators into the existing list. For a custom code
generator to be recognized, it must be written as a Windows Dynamic Link Library (DLL).
Moreover, the DLL must contain the following interface functions:

// prototypes of common functions
extern "C"
 {
 __declspec(dllexport) int IsRcgCWizard(void);
 __declspec(dllexport) int GetNumberOfCodeGenerators(void);

 __declspec(dllexport) const char * GetNthMenuItemName(int n);
 __declspec(dllexport) const char * GetNthFunctionName(int n);
 }

These functions are defined as C functions (extern “C”) so that code generators written with other
languages may easily be interfaced with the IDE. Reads166 refers to the DLL as a “wizard” and
allows each wizard to have the capability to generate different types of code segments, say for
timers or state machine templates. A code generator is the conceptual entity that generates a
certain type of code. Each code generator is identified by its own name in the IDE dialogs. Thus,

5

each user-developed wizard may include several code generators. Inserting a user-developed
code generator begins with selecting the DLL. The IDE loads this DLL and calls the first function
IsRcgCWizard(). If this function exists in the DLL and returns a nonzero value (TRUE) the DLL is
assumed to be a valid code generator. Incidentally, you may also develop assembly language
code generators. In this case, the function IsRcgAsmWizard() is sought. Provided that the DLL is
recognized as a valid wizard, the IDE calls the function GetNumberOfCodeGenerators() and
expects an integer count. Each code generator has a menu item name and a function name. The
menu item name is retrieved by calling the function GetNthMenuItem() with the parameter n set to
the ordinal value between one and the number of code generators previously obtained. The menu
items are displayed in the IDE dialog list boxes. Similarly, the IDE calls the function
GetNthFunctionName() with the ordinal value as the parameter. The function name is used in
invoking the associated code generator of the wizard. If any of these functions fail, the IDE
assumes the wizard is not a valid one and aborts the setup.

When the user-developed code generator is to be used, the programmer selects it from the list box
by clicking on its menu name. The IDE then calls the function, using the function name retrieved
by GetNthFunctionName() during the setup. The function prototype for each code generator is
shown below.

extern "C"
__declspec(dllexport) int FunctionName(int nhWin,
 char *szPath,
 int nProcessor);

Again, the functions are defined as C functions for better portability. The name of the function must
match that returned by GetNthFunctionName(). The function is expected to return a success
code, zero (FALSE) if there was an error or if the user cancelled the operation, or nonzero (TRUE)
if the code generation was successful. The three arguments are provided by the IDE. The first is
the handle to the main window of the IDE. The code generator may use this window as its parent
window. The second parameter is the path of the file to be generated by the code generator. This
argument points to a buffer large enough to hold the largest path. The code generator should
ignore any filename or extension in the given path. It should also modify the path by appending
the file name and extension of the generated module. It is this filename and extension that the IDE
uses to name the new project module. The last argument is the C166 processor core type,
currently 166 or 167. The code generator may present its own dialogs, obtain user information and
generate one or more source files.

The interface between the Reads166 IDE and user-written code generators contains a few more
aspects and features we will skip. If you would like to write your own code generator, you may
reuse most of the interface code we develop in this example without modification (see 1). While
the interface code remains practically unchanged, the user must provide specific code to produce
the particular source for his code generator. During the experiments, I tried two approaches. First,
the code to be produced may be viewed as a fixed file with special embedded macros. I used the
format %n% where n is a number identifying the macro and enumerated the macros from 1 to N,
where N is the total number of variable fields. For example, we may write the source line

#define STCOUNT %1%

and save it as fixed text. The code generator gets user information, such as the number of
software timer needed. Suppose the user specifies eight software timers. We store this value as

6

the value of macro 1. Before generating the actual code, our code may scan the fixed text and
replace all macros by their values, in this case, %1% by 8 to produce the following final source
line.

#define STCOUNT 8

Note that the macros need not be replaced only by numerical values. For instance, macros may
be replaced by user-given variable names or configuration bytes.

As an alternative, the final code may be generated line by line using “printf”-type (or, in C++, <<
type) statements. The user information is saved by the dialog, say as the dialog object’s data field
m_nNumberOfSoftwareTimers. When it is time to generate the line, we incorporate this
information in our “printf” statement.

printf(sz, “#define STCOUNT %d\n”, m_nNumberOfSoftwareTimers);

This line is then added to the output file. Although the first approach sounds more formal, we
chose the latter approach due to its simplicity. The dialog code and “printf”-type code generation
statements are relatively straightforward in nature, and thus are not listed here.

We will write two code generators, one to implement a set of software timers, and another to
implement a polled state machine.

Software Timers Code Generator
Software timers are used in many states for timeout purposes. Moreover, we may need a
multitude of software timers, each keeping track of a different timeout, but all operating
concurrently. Our code generator produces two files, SoftwareTimers.c and a corresponding
header file Stimers.h. The header file contains macros, which may be used by the calling routines.
Thus, the header must be included in all such calling modules. The header is entirely fixed, except
for the number of software timers, as discussed above.

#ifndef STIMERS_H
#define STIMERS_H

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#define EXPIRED(n) (ST[n].uExpired)
#define ENABLE(n) {ST[n].uEnable=1;}
#define DISABLE(n) {ST[n].uEnable=0;}

// --- constants ---
#define STCOUNT 8 // number of software timers

predef unsigned int T0, T0REL, T01CON, T0IC;
predef unsigned bit T0R, IEN;

// --- software timers ---

7

struct SoftwareTimer
 {
 unsigned int uEnable, // enable flag
 uExpired; // becomes TRUE upon timeout
 unsigned long int ulTimeout; // milliseconds to timeout
 };

Each software timer is implemented as a structure. The first two fields are Boolean values. The
field uEnable is TRUE if the software timer is in use. When uEnable is FALSE, the software timer
is considered off-line. The first field is set to TRUE or FALSE by the code that uses the timer. The
second field, uExpired, becomes TRUE upon a timeout. The calling code should not modify this
field, only read it. The last field is an unsigned long integer showing the remaining number of
milliseconds to timeout. As this implies, the timers as count-down timers. Timeouts from one
millisecond to 0xFFFFFFFF milliseconds, or roughly 1193 hours, are possible. Each millisecond,
the ulTimeout field of each enabled timer is decremented. Those timers whose ulTimeout reach 0
are disabled and their uExpired fields are set to TRUE.

The macros EXPIRED, ENABLE, and DISABLE simplify accessing the structure fields. The
following code, for example, may be employed if a message is to be displayed when timer 3
expires (reaches zero).

if(EXPIRED(3)) SendStr("Timeout !\n");

Software timers are based on one of the processor’s hardware timers. The hardware timer is run
in a reload mode. The reload value depends on the CPU frequency. Interrupts are generated
every millisecond. The interrupt service routine decrements the ulTimeout field of each enabled
software timer. If any of these ulTimeout values reach zero, the interrupt service routine also sets
the corresponding uExpired field to TRUE and sets the corresponding uEnabled to FALSE. The C
file generated by the code generator contains a global variable, named ST is defined to hold all
timer structures.

// --- global variables ---
struct SoftwareTimer ST[STCOUNT];

ST is an array of STCOUNT elements, each a structure of type SoftwareTimer. The macro
STCOUNT is defined in the header file, based on the user input to the code generator, as
explained above. The header file also includes macros to access the fields of the software timer
structures as shown below. The header file is shown below. Note that although the code is written
in C, it takes an object-oriented approach to software timers. Each element of the global variable
ST encapsulates a timer. Moreover, the macros EXPIRED(), ENABLE(), and DISABLE() play the
role of member functions, but without the overhead of C++ classes.

The generated source file “SoftwareTimers.c “ contains four functions: the initialization routines
StInit() and ResetSoftwareTimers(), the routine StartSTimer() to launch a timer, and the interrupt
service routine TnIsr() that updates the software timers every millisecond. The name of the
interrupt service routine depends on the hardware timer selected by the user. User inputs are
received by a single dialog box as shown below.

8

Figure 1. Capturing user information to generate code for software timers.

These settings generate the following StInit routine.

void StInit(void){

 T0REL=0xF63C; // reload value determines the period
 T0=0xF63C; // start timer with reload value

// --- set up the timer control register ---
 T01CON&=0xFF00; // prescalar=8, Timer0 off
 T0IC=0x45; // enable T0 interrupts, level=1, group=1

// --- clear and initialize all timers ------------
 ResetSoftwareTimers();

// --- start timer ------------
 T0R=1; // start timer
}

StInit() is to be called only once at the beginning of the main program. The other initialization
routine ResetSoftwareTimers() are actually called in StInit(). This routine simply resets all software
timer fields as shown below.

void ResetSoftwareTimers(void){
int n;
 for(n=0; n<STCOUNT; n++)
 {
 ST[n].uEnable=FALSE;
 ST[n].ulTimeout=1;
 ST[n].uExpired=FALSE;
 }
}

Note that ResetSoftwareTimers() does not contain any values or fields that depend on the user
selections. It is simply generated as fixed text. ResetSoftwareTimers() may be called by the
application. It simply has the effect of disabling all software timers.

9

The routine StartSTimer() is also void of any user-defined values, hence, is generated as fixed
static text.

void StartSTimer(unsigned int nSTimer, unsigned long int ulMS){

 if(nSTimer >= STCOUNT) return;
 IEN = 0; // suspend interrupts while enabling software timers
 ST[nSTimer].uEnable=FALSE;
 ST[nSTimer].ulTimeout=ulMS;
 ST[nSTimer].uExpired=FALSE;
 ST[nSTimer].uEnable=TRUE;
 IEN = 1;
}

The first argument of StartSTimer() specifies the software timer, and the second, the timeout value
in milliseconds. The interrupts are monetarily suspended during setting up the timer.

The last function is the interrupt service routine. It is given below for Timer T0.

void interrupt(0x80) T0Isr(void){
int n;

 for(n=0; n<STCOUNT; n++)
 {
 if(ST[n].uEnable)
 {
 if(ST[n].ulTimeout>0) ST[n].ulTimeout--;
 else
 {
 ST[n].uExpired=TRUE; // set the timer expired flag
 ST[n].uEnable=FALSE; // and disable the timer
 }
 }
 }
}

Other than the interrupt vector, the interrupt service routine is fixed text.

State Machine Code Generator and an Example
We next present the state machine code generator in conjunction with a specific example, namely
a self-serve gas station pump. The state machine code generator only requires the state names
and the name of the state space (or application). The user interface is rather straightforward.

10

Figure 2. Inputting user-given state names to generate code for the state machine.

The user simply types state names into an edit field, which are then added to a list box. In case of
an error, the states in the list box may be selected and deleted. Once all states names are
entered, another dialog box asks for the state space name.

Figure 3. The name of the state space is used in defining global variables.

The state space name, here “Pump” is used in constructing the two global state variables as
egPumpState and egNextPumpState. These variables and states are inserted into the
corresponding fields of generated code.

The self-service gas pump follows a few simple operations. The user swipes a credit card, makes
a selection, pumps the gas, and finally receives a receipt. Instructions are typically given on a
simple character display, and a few pushbuttons are used to receive menu selections. The pump
has other inputs, such as switches to sense the removal and insertion of the dispenser nozzle and

11

a fuel flow sensor, which we will omit for brevity. The following flowchart depicts a simplified set of
operations. Note that the timeout feature is liberally used throughout the process.

Figure 4. A simplified flowchart of self-serve gas pump operations.

idle

card
swiped

card
verified

pumping

pump
stopped

printing

timeout

restart

timeout

done

grade
selected

timeout

12

The model has 7 states: idle, card_swiped, card_verified, grade_selected, pumping,
pump_stopped, and printing. The process starts in the idle state. When the customer swipes a
credit card the process enters state card_swiped. The pump then attempts to verify the card
number and account. In this simplified version, we assume that the card is always verified and the
process enters the state card_verified. In an actual application, if the card is not verified, an error
message would be displayed and the process would return to idle. Once in the card_verified state,
a query is displayed and the customer is expected to select the grade. If the selection is made in
the allowed time the process enters state grade_selected. In this state, the customer is expected
to start the pump within a given period. If the pump starts, the process enters state pumping and
waits for the pump to stop. Note that we need to wait a little in state pump_stopped since the
customer may not have completed the operation but have simply paused. If the pump restarts
within a given grace period, we return to state pumping. Otherwise the process enters and remains
in the state printing while a receipt is produced. Upon the print completion, the process returns to
the idle state. Whenever a timeout occurs, the process returns to the idle state to repeat the cycle
over. Note that this is a simplified set of operations. For example, the pump may accept debit
cards, in which case, the customer needs to enter a personal identification number. Similarly, most
pumps ask the customer if a receipt is desired. The timeout periods and timeout events play a
fundamental role in this application. The polling approach is justified since the timeouts are in the
order of tens of seconds.

The enumerated data type in C is a convenient way to define the states.

enum PUMPSTATE { sIdle,
 sCardSwiped,
 sCardVerified,
 sGradeSelected,
 sPumping,
 sPumpStopped,
 sPrinting
 } egPumpState, egNextPumpState;

We define the states as well as two global variables to keep track of the current and next states.

We will take a top-down look at the code. Our main program is simply an endless loop that iterates
through the state machine. Each iteration is accomplished by the routine is called
StepStateMachine().

void StepStateMachine(void){

// get inputs -- this may change egNextState
 if(egPumpState==egNextPumpState) ScanEvents();

// execute state actions
 if(egNextPumpState!=egPumpState)
 {
 ExitState(egPumpState); // leave current state
 EnterState(egNextPumpState); // enter new state
 egPumpState=egNextPumpState; // update state
 }
 else StayInState(egPumpState); // repeat last state
}

13

The actions to be taken at each iteration depend on the current and next states. Following our
assumptions, the next state may change as a response to an external input, or internally by the
state machine. We assume the transitions are instantaneous. Thus, the state may not change
during the entry and exit activities.

Provided that the current state is the same as the next state, StepStateMachine() scans the inputs.
The next state may change in ScanEvents(). If the current state is still the same as the next state
the function StayInState() is called. Otherwise, the state machine undergoes a transition. The exit
activity is performed in ExitState() with its parameter set to the current state. Next the entry
activity is performed by EnterState() with its parameter set to the next state. Finally, the global
variable denoting the current state is equated to that of the next state.

In the demo, we simulate the actual inputs by keyboard characters. ScanEvents() inspects the
microcontroller’s serial port. If a character is received PeekChar() returns a nonzero value
(TRUE). In this case, the character is removed from the serial port buffer by GetChar(). The next
state is determined as a function of the received character.

void ScanEvents(void){
// enter your code : scan inputs and set egNextPumpState...

char c;

// check user input at serial port
 if(!PeekChar()) return;
 c=GetChar();
 switch(c)
 {
 case 'c': if(egPumpState==sIdle) egNextPumpState=sCardSwiped;
 break;

 case '1':
 case '2':
 case '3': if(egPumpState==sCardVerified)
 egNextPumpState = sGradeSelected;
 break;

 case 'b': if(egPumpState==sGradeSelected)
 egNextPumpState = sPumping;
 if(egPumpState==sPumpStopped)
 egNextPumpState = sPumping;
 break;

 case 'e': if(egPumpState==sPumping)
 egNextPumpState = sPumpStopped;
 break;
 }
}

The three functions ExitState() and EnterState() and StayInState() have the same structure. The
code generator writes this structure. These functions are all based on a single switch statement
whose expression is the function parameter (the state). The switch statement with the specified
states is automatically generated by the code generator. The programmer needs to enter
application-specific code into each case action. The function EnterState(), including the
application-specific code, is given below.

14

void EnterState(enum PUMPSTATE es){
// enter your code : call entry activity functions...
 switch(es)
 {
 case sIdle :
 SendStr("Idle state... press 'c' (card swipe) to begin cycle...\n");
 break;

 case sCardSwiped :
 SendStr("Card swiped... Waiting for verification...\n");
 StartSTimer(1,1000); // verification in 1 second...
 break;

 case sCardVerified :
 SendStr("Card verified... choose grade ('1','2', or '3')...\n");
 StartSTimer(0,3000); // timeout in 3 seconds...
 break;

 case sGradeSelected :
 SendStr("Grade selected... press 'b' to begin pumping...\n");
 StartSTimer(0,3000); // timeout in 3 seconds...
 break;

 case sPumping :
 SendStr("Pumping... press 'e' to end pumping...\n");
 StartSTimer(0,10000); // timeout in 10 seconds...
 break;

 case sPumpStopped :
 SendStr("Pump stopped... press 'b' to start pumping again...\n");
 StartSTimer(0,1000); // grace period is 1 second...
 break;

 case sPrinting :
 SendStr("Pump stopped... Printing receipt...\n");
 StartSTimer(1,1000); // printing takes 1 second...
 break;
 }
}

Upon entry to a state, we display a message and depending on the state, launch a software timer.
The timer is used to keep track of timeouts. In two cases, namely in states card_swiped and
printing, the timer is used to simulate the time it takes to authorize the card and to print the receipt.
The ExitState() function is really not needed in this example. We only insert code into the action of
case corresponding to state sPrinting. We simply display a message that the cycle is over.

Besides in the function ScanEvents(), the next state may change in the function StayInState().
Again, the switch statement is generated by the code generator. Generally speaking, we check for
timeouts. No action is taken if no timeout has occurred. If there is a timeout, we abort the cycle
and return to the idle state. The two exceptions, namely the states where the timer is used to
simulate the card authorization and the printing of the receipt do not abort the process.

void StayInState(enum PUMPSTATE es){
 switch(es)
 {
 case sIdle :
 break;

15

 case sCardSwiped :
 if(EXPIRED(0))
 egNextPumpState=sCardVerified; // verification completed
 break;

 case sCardVerified :
 if(EXPIRED(1))
 {
 SendStr("Timeout !\n");
 egNextPumpState=sIdle; // timeout
 }
 break;

 case sGradeSelected :
 if(EXPIRED(0))
 {
 SendStr("Timeout !\n");
 egNextPumpState=sIdle; // timeout
 }
 break;

 case sPumping :
 if(EXPIRED(0))
 {
 SendStr("Timeout !\n");
 egNextPumpState=sIdle; // timeout
 }
 break;

 case sPumpStopped :
 if(EXPIRED(0)) egNextPumpState=sPrinting;
 break;

 case sPrinting :
 if(EXPIRED(1)) egNextPumpState=sIdle; // printing completed
 break;
 }
}

Our code generator creates the functions with the switch statements. The switch statements have
a separate case clause for each of the states. The application-specific code is written mostly as
case action statements. It is also recommended that entry and exit activities be written as
separate functions for each state. This way, these functions may be called at the proper case
actions.

It is noteworthy that the effort associated with writing a custom code generator turned out to be
much less than expected at the outset. Granted, it is initially awkward to think about code
generator code, which in turn will produce source code. Nonetheless, the entire process seems to
be very orderly, especially if one starts with a sample output of the code generator. Writing the
code generator to produce this sample output by a series of “printf” statements is almost trivial.
The customization process may then be undertaken iteratively as you add features to your dialogs
and incorporate the corresponding values in the “printf” statements.

References
1. Complete source code of this article and further information is available from Rigel

Corporation, www.rigelcorp.com.
2. DAvE Home Page, http://www.smi.siemens.com/DAvE/newsDAvE.html

16

3. Information on Xilinx, Inc. CPLD and FPGA development tools are available at
http://www.xilinx.com.

4. Information on BetterState is available from the Integrated Systems, Inc., website
http://www.isi.com/products/betterstate.

17

Sencer Yeralan, P.E., Ph. D.

About the author
Dr. Yeralan has been teaching industrial automation and control at the University of Florida for the
last ten years. He designs the C166 family evaluation and OEM boards made by Rigel
Corporation. He may be reached at spy@rigelcorp.com.

