

C500
Microcontroller Family

Architecture and Instruction Set

UserÕs Manual 04.98

Edition 04.98
Published by

Siemens AG,
Bereich Halbleiter, Marketing-
Kommunikation, Balanstra§e 73,
81541 M�nchen

©

 Siemens AG 1998.
All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes
and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies
and Representatives worldwide (see address list).
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact
your nearest Siemens Office, Semiconductor Group.
Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you Ð get in touch with your nearest sales office. By agreement we will
take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs in-
curred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components

1

 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems

2

 with the express
written approval of the Semiconductor Group of Siemens AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the

failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain hu-

man life. If they fail, it is reasonable to assume that the health of the user may be endangered.

C500 Architecture and Instruction UserÕs Manual
Revision History : 04.98

Original Version

Previous Releases: 07.96, 01.97, 09.97

Page Subjects (changes since last revision)

4-15, 4-59,
4-79

Correction: first paragraph of ÒDescriptionÓ; P is affected if <dest-byte> = A

4-16 Encoding for ANL direct,A corrected

Page Subjects (changes from 01.97 to 09.97)

4-88 Table 4-4: Mnemonics for Opcode 83

H

, 86

H

 and 87

H

 corrected

Page Subjects (changes from 07.96 to 01.97)

Table of
content
4-89

Reference to pages of each instruction added

Table header corrected

General Information

Table of Contents Page

Semiconductor Group I-1 1998-04-01

1 Fundamental Structure

 . 1-1
1.1 Introduction . 1-1
1.2 Memory Organization . 1-2
1.2.1 Program Memory . 1-2
1.2.2 Data Memory . 1-3
1.2.2.1 Internal Data Memory . 1-3
1.2.2.2 Internal Data Memory XRAM . 1-5
1.2.2.3 External Data Memory . 1-6
1.2.3 Special Function Register Area . 1-6

2 CPU Architecture

 . 2-1
2.1 Accumulator . 2-2
2.2 B Register . 2-2
2.3 Program Status Word . 2-2
2.4 Stack Pointer . 2-3
2.5 Data Pointer . 2-4
2.5.1 The Importance of Additional Datapointers . 2-5
2.5.2 How the eight Datapointers of the C500 are realized . 2-5
2.5.3 Advantages of Multiple Datapointers . 2-6
2.5.4 Application Example and Performance Analysis . 2-6
2.6 Enhanced Hooks Emulation Concept . 2-9
2.7 Basic Interrupt Handling . 2-10
2.8 Interrupt Response Time . 2-12

3 CPU Timing

. 3-1
3.1 Basic Timing . 3-1
3.2 Accessing External Memory . 3-3
3.2.1 Accessing External Program Memory . 3-3
3.2.2 Accessing External Data Memory . 3-4

4 Instruction Set

 . 4-1
4.1 Addressing Modes . 4-1
4.2 Introduction to the Instruction Set . 4-3
4.2.1 Data Transfer Instructions . 4-3
4.2.2 Arithmetic Instructions . 4-4
4.2.3 Logic Instructions . 4-5
4.2.4 Control Transfer Instructions . 4-5
4.3 Instruction Definitions . 4-7
4.4 Instruction Set Summary Tables . 4-82
4.4.1 Functional Groups of Instructions . 4-82
4.4.2 Hexadecimal Ordered Instructions . 4-87

5 Package Information

 . 5-1
5.1 P-DIP Package . 5-1
5.2 PLCC Packages . 5-2
5.3 MQFP Packages . 5-5

Fundamental Structure
C500 Family

1 Fundamental Structure

1.1 Introduction

The members of the C500 Siemens microcontroller family are basically fully compatible in
architecture and software to the standard 8051 microcontroller family. Especially, they are
functionally upward compatible to the SAB 80C52/80C32 microcontroller. While maintaining all
architectural and operational characteristics of the SAB 80C52/80C32, the C500 microcontrollers
differ in number and complexity of their peripheral units which have been adapted to the specific
application areas.

The goal of this ÒArchitecture and Instruction Set ManualÒ is to summarize the basic architecture
and functional characteristics of all members of the C500 microcontroller family. This includes the
description of the architecture and the description of the complete instruction set. Detailed
information about the different versions of the C500 microcontrollers are given in the specific User
Manuals.
Semiconductor Group 1-1 1998-04-01

Fundamental Structure
C500 Family

1.2 Memory Organization

The memory resources of the C500 family microcontrollers are organized in different types of
memories (data and program memory), which further can be located internally on the
microcontroller chip or outside of the microcontroller. The memory partitioning of the C500
microcontrollers is typical for a Harvard architecture where data and program areas are held in
separate memory areas. The on-chip peripheral units are accessed using an internal special
function register memory area.

The available memory areas have different sizes and are located in the following five address
spaces:

1.2.1 Program Memory

The program memory of the C500 family microcontrollers can be composed of either completely
external program memory, of only internal program memory (on-chip ROM / EEPROM), or of a
mixture of internal and external program memory. lf the EA pin (EA=External Access) is held at low
level, the C500 microcontrollers execute the program code always out of the external program
memory. Romless C500 derivatives can use this type of program memory only. C500 derivatives
with on-chip program memory typically use their internal program memory only. If the internal
program memory is used the EA pin must be put to high level. With EA high, the microcontroller
executes instructions internally unless the address exceeds the upper limit of the internal program
memory. If the program counter is set to an address (e.g. by a jump instruction) which is higher than
the internal program memory, instructions are executed out of an external program memory. When
the instruction address again is below the internal program memory size limit, internal program
memory is accessed again.

Figure 1-1 shows the typical C500 family microcontroller program memory configuration for the two
cases EA=0 and EA=1. The ROM boundary shown in figure 1-1, applies to the C501 which has 8K
byte of internal ROM. Other C500 family microcontrollers with different ROM size have different
ROM boundaries.

Table 1-1
C500 Address Spaces

Type of Memory Location Size

Program Memory External max. 64 KByte

Internal (ROM, EEPROM) Depending on C500 version
2K up to 64KByte

Data Memory External max. 64 KByte

Internal XRAM Depending on C500 version
256 Byte up to 3 KByte

Internal 128 or 256 Byte

Special Function Register Internal 128/256 Bytes
Semiconductor Group 1-2 1998-04-01

Fundamental Structure
C500 Family

Figure 1-1
Program Memory Configuration (Example of the C501)

1.2.2 Data Memory

The data memory area of the C500 family microcontrollers consists of internal and external data
memory portions. The internal data memory area is addressed using 8-bit addresses. The external
data memory and the internal XRAM data memory are addressed by 8-bit or16-bit addresses.

The content of the internal data memory (also XRAM) is not affected by a reset operation. After
power-up the content is undefined, while it remains unchanged during and after a reset as long as
the power supply is not turned off. The XRAM content is also maintained when the C500
microcontrollers are in power saving modes.

1.2.2.1 Internal Data Memory

The internal data memory address space is divided into three basic, physically separate and distinct
blocks: the lower 128 byte of internal data RAM, the upper 128 byte of internal data RAM, and the
128 byte special function register (SFR) area. The lower internal data RAM and the SFR area
further include 128 bit locations each. These bits can be handled by specific bit manipulation
instructions.

1FFF H

0000H

Memory
Program

FFFF H

External

Internal
Program
Memory

H2000 ROM
Boundary

EA = 1 EA = 0

External

HFFFF

Program
Memory

H0000

MCD02766

The location of the ROM boundary depends on the specific C500 devices.
Semiconductor Group 1-3 1998-04-01

Fundamental Structure
C500 Family

Figure 1-2 shows the configuration of the three basic internal RAM areas. The lower data RAM is
located in the address range 00H - 7FH and can be addressed directly (e.g. MOV A,direct) or
indirectly (e.g. MOV A,@R0 with address in R0). A bit-addressable area of 128 free programmable,
direct addressable bits is located at byte addresses 20H - 2FH of the lower data RAM. Bit 0 of the
internal data byte at 20H has the bit address 00H while bit 7 of the internal data byte at 2FH has the
bit address 7FH. The lower 32 locations of the internal lower data RAM are assigned to four banks
with eight general purpose registers (GPRs) each. Only one of these banks can be enabled at a
time to be used as general purpose registers.

Figure 1-2
Internal Data Memory Organization

MCD02767

FF FE FD FC FB FA F9 F8
FF H
F8H

HF0 F0F1F2F3F4F5F6F7

HE8 E8E9EAEBECEDEEEF

HE0 E0E1E2E3E4E5E6E7

HD8 D8D9DADBDCDDDEDF

HD0 D0D1D2D3D4D5D6D7

HC8 C8C9CACBCCCDCECF

HC0 C0C1C2C3C4C5C6C7

HB8 B8B9BABBBCBDBEBF

HB0 B0B1B2B3B4B5B6B7

HA8 A9A8AAACABADAEAF

HA0 A0A1A2A3A4A5A6A7

H98 99989A9C9B9D9E9F

H90 9091929394959697

H88 89888A8C8B8D8E8F

H80 8081828384858687

Internal SFR Area
(direct addressable)

Byte128

7F H

7F 7E 7D 7C 3B 7A 79 78
H30

2F H
70717273747576772EH
68696A6B6C6D6E6F2DH
60616263646566672CH
58595A5B5C5D5E5F2BH
50515253545556572A H
48494A4B4C4D4E4F29H
404142434445464728H
38393A3B3C3D3E3F27 H
303132333435363726H
28292A2B2C2D2E2F25H
202122232425262724 H
18191A1B1C1D1E1F23 H
101112131415161722H
08090A0B0C0D0E0F21 H
0001020304050607H20

R0H00
R1H01
R2H02
R3H03
R4H04
R5H05
R6H06
R7H07

08H

1F H
18
17

H
H

10
0F

H
H

RAM Area ~~~~

Re
gi

st
er

ba
nk

 0

Registerbank 2

Registerbank 3

Registerbank 1

HFF

H7F
H80

00H

128 Byte

(indirect & direct

Lower

addressable)

Internal Data
RAM

RAM
Internal Data

addressable)

Upper

(indirect

128 Byte

1)

1) This internal RAM area is optional. Some low-end C500 family microcontrollers don't
provide this internal RAM area.

16
 B

yt
es

 w
ith

 1
28

 b
ita

dd
re

ss
ab

le
 B

its
Semiconductor Group 1-4 1998-04-01

Fundamental Structure
C500 Family

While the SFR area and the upper internal RAM area share the same address locations (80H -
FFH), they must be accessed through different addressing modes. The upper internal RAM can
only be accessed through indirect addressing while the special function registers (SFRs) are
accessible only by direct addressing instructions. The SFRs which are located at addresses with
address bit 0-2 equal 0 (addresses 80H, 88H, 90H,F0H, FFH) are bitaddressable SFRs.

1.2.2.2 Internal Data Memory XRAM

Some members of the C500 family microcontrollers provide an additional internal data memory
area, called the XRAM. This data memory area is logically located at the upper end of the external
data memory space (except C502), but it is integrated on the chip. Because the XRAM is used in
the same way as external data memory the same instruction types must be used for accessing the
XRAM.
Figure 1-3 shows a typical 256 byte XRAM address mapping of the C500 microcontrollers.

Figure 1-3
XRAM Memory Mapping (256 Byte)

Depending on the C500 derivative, the size of the XRAM area differs from 128 upto 3K byte.
Further, the XRAM can be enabled or disabled. If an internal XRAM area is disabled, external data
memory can be accessed in the address range of the internal XRAM.

0000H

Memory
Data

FFFF H

External

Internal
HFFFF

XRAM

MCD02768

XRAM is located at the upper end of the external data memory area.

HFEFF
FF00H
Semiconductor Group 1-5 1998-04-01

Fundamental Structure
C500 Family

1.2.2.3 External Data Memory

The 64 Kbyte external data memory can be addressed by instructions that use 8-bit or 16-bit indirect
addressing. A 16-bit external memory addressing mode is supported by the MOVX instructions
using the 16-bit datapointer DPTR for addressing. For 8-bit addressing MOVX instructions with the
general purpose registers R0/R1 are used.

1.2.3 Special Function Register Area

The registers of a C500 microcontroller, except the program counter and the four general purpose
register banks, reside in the special function register (SFR) area. The special function register area
typically provides 128 bytes of direct addressable SFRs. The SFRs which are located at addresses
with address bit 0-2 equal 0 (addresses 80H, 88H, 90H,F0H, FFH) are bitaddressable SFRs (see
also figure 1-1). For example, the SFR with byte address 80H provides the bit locations with bit
addresses 80H to 87H. The bit addresses of the SFR bits reach from 80H to FFH.

Due to the limited number of 128 standard SFRs, some derivatives of the C500 microcontroller
family provide an additional 128 byte SFR area, called the mapped SFR area. The mapped SFR
area provides the same addressing capabilities (direct addresses, bit addressing) as the standard
SFR area.

Special Function Register SYSCON (Address B1H)

As long as bit RMAP is set, mapped special function registers can be accessed. This bit is not
cleared by hardware automatically. Thus, when non-mapped/mapped registers are to be accessed,
the bit RMAP must be cleared/set by software, respectively each. Some registers (e.g. ACC) are
accessed independently of bit RMAP.

Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register
bank. This allows fast context switching, which is useful when entering subroutines or interrupt
service routines. The 8 general purpose registers of the selected register bank may be accessed
by register addressing. For indirect addressing modes, the registers R0 and R1 are used as pointer
or index register to address internal or external memory (e.g. MOV @R0).

Bit Function

RMAP Special function register map bit
RMAP = 0 : The access to the non-mapped (standard) special function

register area is enabled (default after reset).
RMAP = 1 : The access to the mapped special function register area is

enabled.

7 6 5 4 3 2 1 0

Ð RMAP ÐB1H SYSCON

Bit No. MSB LSB

Ð ÐÐ Ð Ð

The functions of the shaded bits are not described in this section.
Semiconductor Group 1-6 1998-04-01

CPU Functions
C500 Family

2 CPU Architecture

The typical architecture of a C500 family microcontroller is shown in figure 2-1. This block diagram
includes all main functional blocks of the C500 microcontrollers. The shaded blocks are basic
functional units which are mandatory for each C500 microcontroller. The other functional blocks
such as XRAM, peripheral units, and ROM/RAM sizes are specific to each C500 microcontroller
derivative.

Figure 2-1
C500 Microcontroller Architecture Block Diagram

The core block represents the CPU (Central Processing Unit) of the C500 family microcontrollers.
The CPU consists of the instruction decoder, the arithmetic section, the CPU registers, and the
program control section. The housekeeper unit generates internal signals for controlling the
functions of the individual internal units within the microcontroller. Port 0 and port 2 are required for
accessing external code and data memory and for emulation purposes. The external control signals
and the clock generation are handled in the external control block. The access control unit is
responsible for the selection of the on-chip memory resources. The IRAM provides the internal RAM
which includes the general purpose registers. The interrupt requests from the peripheral units are
handled by an interrupt controller unit.

C500 device specific is the configuration of the on-chip peripheral units. Serial interfaces, timers,
capture/compare units, A/D converters, watchdog units, or a multiply/divide unit are typical
examples for on-chip peripheral units. The external signals of these peripheral units are available
at multifunctional parallel I/O ports or at dedicated pins.

MCB02769

RST
EA
PSEN
ALE

XTAL

Ext.
Control

Access
Control

ROM

XRAM

Housekeeper

C500 Core
(1 or 8 Datapointer)

IRAMInterrupt
ControllerSerial

Port

Timers

WDU

MDU

Control

Pa
ra

lle
l

Po
rt

Pe
rip

he
ra

l
Bu

s

Basic functional blocks

Ad
dr

es
s

Bu
s

Da
ta

 B
us

Port0/Port2

A
D

Po
rt

Pa
ra

lle
l

Semiconductor Group 2-1 1998-04-01

CPU Functions
C500 Family

The arithmetic section of the core performs extensive data manipulation and is comprised of the
arithmetic/logic unit (ALU), an A register, B register and PSW register. Further, it has extensive
facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of
program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and
15% three-byte instructions. The ALU accepts 8-bit data words from one or two sources and
generates an 8-bit result under the control of the instruction decoder. The ALU performs the
arithmetic operations add, substract, multiply, divide, increment, decrement, BDC-decimal-add-
adjust and compare, and the logic operations AND, OR, Exclusive OR, complement and rotate
(right, left or swap nibble (left four)). Also included is a Boolean processor performing the bit
operations as set, clear, complement, jump-if-not-set, jump-if-set-and-clear and move to/from carry.
Between any addressable bit (or its complement) and the carry flag, it can perform the bit operations
of logical AND or logical OR with the result returned to the carry flag.

The program control section of the core controls the sequence in which the instructions stored in
program memory are executed. The 16-bit program counter (PC) holds the address of the next
instruction to be executed. The conditional branch logic enables internal and external events to the
processor to cause a change in the program execution sequence.

2.1 Accumulator

ACC is the symbol for the accumulator register. The mnemonics for accumulator-specific
instructions, however, refer to the accumulator simply as A.

2.2 B Register

The B register is used during multiply and divide and serves as both source and destination. For
other instructions it can be treated as another scratch pad register.

2.3 Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state of the
CPU. The bits of the PSW are used for different functions which are: two register bank selection bits,
two carry flags and an overflow flag for arithmetic instructions, a parity bit for the content of the ACC,
and two general purpose flags.

The bit definitions of the PSW are shown on the next page.
Semiconductor Group 2-2 1998-04-01

CPU Functions
C500 Family

Special Function Register PSW (Address D0H) Reset Value : 00H

2.4 Stack Pointer

The stack pointer (SP) register is 8 bits wide. It is incremented before data is stored during PUSH
and CALL executions and decremented after data is popped during a POP and RET (RETI)
execution, i.e. it always points to the last valid stack byte. While the stack may reside anywhere in
the on-chip RAM, the stack pointer is initialized to 07H after a reset. This causes the stack to begin
a location = 08H above register bank zero. The SP can be read or written under software control.

Bit Function

CY Carry Flag
Used by arithmetic and conditional branch instruction.

AC Auxiliary Carry Flag
Used by instructions which execute BCD operations.

F0 General Purpose Flag

RS1
RS0

Register Bank select control bits
These bits are used to select one of the four register banks.

OV Overflow Flag
Used by arithmetic instruction.

F1 General Purpose Flag

P Parity Flag
Always set/cleared by hardware to indicate an odd/even number of "one"
bits in the accumulator, i.e. even parity.

PF1OVRS0RS1F0ACCY

01234567

LSBMSBBit No.

D0H PSW

RS1 RS0 Function

0 0 Registerbank 0 at data address 00H-07H selected

0 1 Registerbank 1 at data address 08H-0FH selected

1 0 Registerbank 2 at data address 10H-17H selected

1 1 Registerbank 3 at data address 18H-1FH selected
Semiconductor Group 2-3 1998-04-01

CPU Functions
C500 Family

2.5 Data Pointer

8-bit accesses to the internal XRAM data memory or the external data memory are executed using
the data pointer DPTR as an 16-bit address register. Normally, the C500 family microcontrollers
have one data pointer. But some members of the C500 family provide eight data pointers. The
availability of eight data pointers especially supports the programming in high level languages which
have a demand to store data in large external data memory portions.

Special Function Register DPL (Address 82H) Reset Value : 00H
Special Function Register DPH (Address 83H) Reset Value : 00H
Special Function Register DPSEL (Address D0H) Reset Value : 00H

Bit Function

Ð Reserved bits for future use

DPSEL.2 - 0 Data pointer select bits
DPSEL.2-0 defines the number of the actual active data pointer.DPTR0-7.

LSB.1.2.3.4.5.6.7

01234567

LSBMSB

Bit No.

82H DPL

.0.1.2.3.4.5.6MSB83H DPH

.0.1.2ÐÐÐÐÐ92H DPSEL

DPSEL2 DPSEL1 DPSEL0 Function

0 0 0 Data pointer 0 selected

0 0 1 Data pointer 1 selected

0 1 0 Data pointer 2 selected

0 1 1 Data pointer 3 selected

1 0 0 Data pointer 4 selected

1 0 1 Data pointer 5 selected

1 1 0 Data pointer 6 selected

1 1 1 Data pointer 7 selected
Semiconductor Group 2-4 1998-04-01

CPU Functions
C500 Family

2.5.1 The Importance of Additional Datapointers

The standard 8051 architecture provides just one 16-bit pointer for indirect addressing of external
devices (memories, peripherals, latches, etc.). Except for a 16-bit "move immediate" to this
datapointer and an increment instruction, any other pointer handling is to be done byte by byte. For
complex applications with peripherals located in the external data memory space (e.g. CAN
controller) or extended data storage capacity this turned out to be a "bottle neck" for the 8051Õs
communication to the external world. Especially programming in high-level languages (PLM51,
C51, PASCAL51) requires extended RAM capacity and at the same time a fast access to this
additional RAM because of the reduced code efficiency of these languages.

2.5.2 How the eight Datapointers of the C500 are realized

Simply adding more datapointers is not suitable because of the need to keep up 100% compatibility
to the 8051 instruction set. This instruction set, however, allows the handling of only one single 16-
bit datapointer (DPTR, consisting of the two 8-bit SFRs DPH and DPL).

To meet both of the above requirements (speed up external accesses, 100% compatibility to 8051
architecture) the C500 contains a set of eight 16-bit registers from which the actual datapointer can
be selected.

This means that the userÕs program may keep up to eight 16-bit addresses resident in these
registers, but only one register at a time is selected to be the datapointer. Thus the datapointer in
turn is accessed (or selected) via indirect addressing. This indirect addressing is done through a
special function register called DPSEL (data pointer select register). All instructions of the C500
which handle the datapointer therefore affect only one of the eight pointers which is addressed by
DPSEL at that very moment.

Figure 5-1 illustrates the addressing mechanism: a 3-bit field in register DPSEL points to the
currently used DPTRx. Any standard 8051 instruction (e.g. MOVX @DPTR, A - transfer a byte from
accumulator to an external location addressed by DPTR) now uses this activated DPTRx.
Semiconductor Group 2-5 1998-04-01

CPU Functions
C500 Family

Figure 2-2
Accessing of External Data Memory via Multiple Datapointers

2.5.3 Advantages of Multiple Datapointers

Using the above addressing mechanism for external data memory results in less code and faster
execution of external accesses. Whenever the contents of the datapointer must be altered between
two or more 16-bit addresses, one single instruction, which selects a new datapointer, does this job.
lf the program uses just one datapointer, then it has to save the old value (with two 8-bit instructions)
and load the new address, byte by byte. This not only takes more time, it also requires additional
space in the internal RAM.

2.5.4 Application Example and Performance Analysis

The following example shall demonstrate the involvement of multiple data pointers in a table
transfer from the code memory to external data memory.

Start address of ROM source table: 1FFFH
Start address of table in external RAM: 2FA0H

DPH(83) DPL(82)

DPTR0

DPTR7

.0.1.2-----

DPSEL(92)

DPSEL Selected

Data-

pointer.2 .1 .0

DPTR 0000

0 0 1 DPTR 1

0 1 0 DPTR 2

0 1 1 DPTR 3

1 0 0 DPTR 4

1 0 1 DPTR 5

1 1 0 DPTR 6

1 1 1 DPTR 7

MCD00779

External Data Memory

H

H H
Semiconductor Group 2-6 1998-04-01

CPU Functions
C500 Family

Example 1 : Using only One Datapointer (Code for a C501)

Initialization Routine

MOV LOW(SRC_PTR), #0FFH ;Initialize shadow_variables with source_pointer
MOV HIGH(SRC_PTR), #1FH
MOV LOW(DES_PTR), #0A0H ;Initialize shadow_variables with destination_pointer
MOV HIGH(DES_PTR), #2FH

Table Look-up Routine under Real Time Conditions

; Number of cycles
PUSH DPL ;Save old datapointer 2
PUSH DPH ; 2
MOV DPL, LOW(SRC_PTR) ;Load Source Pointer 2
MOV DPH, HIGH(SRC_PTR) ; 2
;INC DPTR Increment and check for end of table (execution time
;CJNE É not relevant for this consideration) Ð
MOVC A,@DPTR ;Fetch source data byte from ROM table 2
MOV LOW(SRC_PTR), DPL ;Save source_pointer and 2
MOV HIGH(SRC_PTR), DPH ;load destination_pointer 2
MOV DPL, LOW(DES_PTR) ; 2
MOV DPH, HIGH(DES_PTR) ; 2
INC DPTR ;Increment destination_pointer

;(ex. time not relevant) Ð
MOVX @DPTR, A ;Transfer byte to destination address 2
MOV LOW(DES_PTR), DPL ;Save destination_pointer 2
MOV HIGH(DES_PTR),DPH ; 2
POP DPH ;Restore old datapointer 2
POP DPL ; 2

; Total execution time (machine cycles) : 28
Semiconductor Group 2-7 1998-04-01

CPU Functions
C500 Family

Example 2 : Using Two Datapointers (Code for a C509)

Initialization Routine

MOV DPSEL, #06H ;Initialize DPTR6 with source pointer
MOV DPTR, #1FFFH
MOV DPSEL, #07H ;Initialize DPTR7 with destination pointer
MOV DPTR, #2FA0H

Table Look-up Routine under Real Time Conditions

; Number of cycles
PUSH DPSEL ;Save old source pointer 2
MOV DPSEL, #06H ;Load source pointer 2
;INC DPTR Increment and check for end of table (execution time
;CJNE É not relevant for this consideration) Ð
MOVC A,@DPTR ;Fetch source data byte from ROM table 2
MOV DPSEL, #07H ;Save source_pointer and

;load destination_pointer 2
MOVX @DPTR, A ;Transfer byte to destination address 2
POP DPSEL ;Save destination pointer and

;restore old datapointer 2

; Total execution time (machine cycles) : 12

The above example shows that utilization of the C500Õs multiple datapointers can make external
bus accesses two times as fast as with a standard 8051 or 8051 derivative. Here, four data variables
in the internal RAM and two additional stack bytes were spared, too. This means for some
applications where all eight datapointers are employed that an C500 program has up to 24 byte (16
variables and 8 stack bytes) of the internal RAM free for other use.
Semiconductor Group 2-8 1998-04-01

CPU Functions
C500 Family

2.6 Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative
way to control the execution of C500 MCUs and to gain extensive information on the internal
operation of the controllers. Emulation of on-chip ROM based programs is possible, too.
Each production chip has built-in logic for the support of the Enhanced Hooks Emulation Concept.
Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation
and production chips are identical.

The Enhanced Hooks TechnologyTM, which requires embedded logic in the C500, allows the C500
together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces
costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate
all operating modes of the different versions of the C500. This includes emulation of ROM, ROM
with code rollover and ROMless modes of operation. It is also able to operate in single step mode
and to read the SFRs after a break.

Figure 2-3
Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks
Emulation Concept to control the operation of the device during emulation and to transfer
informations about the program execution and data transfer between the external emulation
hardware (ICE-system) and the C500 MCU.

MCS02647

SYSCON
PCON
TCON

RESET
EA

PSEN
ALE

Port 0

Port 2

I/O Ports
Optional

Port 3 Port 1

C500
MCU Interface Circuit

Enhanced Hooks

RPort 0RPort 2

RTCON
RPCON

RSYSCON

TEA TALE TPSEN

EH-IC

Target System Interface

ICE-System Interface
to Emulation Hardware
Semiconductor Group 2-9 1998-04-01

CPU Functions
C500 Family

2.7 Basic Interrupt Handling

Each member of the C500 microcontroller family provides several interrupt sources. These
interrupts are generated typically by external events or by the internal peripheral units. If an interrupt
is accepted by the CPU, the microcontroller interrupts a running program and proceeds the program
execution at an interrupt source specific vector address where the interrupt service routine is
located. After the execution of a RETI (return from interrupt) instruction the program is continued at
the point where it has been interrupted. Figure 2-4 shows an example for the interrupt vector
addresses of a C500 microcontroller (C501). Generally, interrupt vector addresses are located in
the code memory area starting at address 0003H. The minimum distance between two consecutive
vector addresses is always 8 bytes. Therefore, interrupt vectors can be assigned to the following
addresses: 0003H, 000BH, 0013H, 001BH, 0023H, 002BH, 0033H 00FBH.

Figure 2-4
Interrupt Vector Addresses (Example of the C501)

An interrupt source indicates to the interrupt controller an interrupt condition by setting an interrupt
request flag. The interrupt request flags are sampled in each machine cycle. The sampled flags are
polled during the following machine cycle. If one of the flags was in a set condition in the preceeding
cycle, the polling cycle will find it and the interrupt controller will cause the CPU to branch to the
vector address of the appropriate service routine by generating an internal LCALL. This hardware-
generated LCALL is blocked by any of the following conditions:

1. An interrupt of equal or higher priority is already in progress.
2. The current (polling) cycle is not in the final cycle of the instruction in progress.
3. The instruction in progress is RETI or any write access to interrupt enable or priority registers.

MCD02770

~~~~

8 Bytes

H002B

0023 H

001BH

0013 H

000BH

0003 H

0000H

Memory
Program

Timer 2
Interrupt

Interrupt
Serial Port

Interrupt
Timer 1

External
Interrupt 1

Interrupt
Timer 0

Interrupt 0
External

Reset

FFFF H
Semiconductor Group 2-10 1998-04-01



 

CPU Functions
C500 Family

    
Any of these three conditions will block the generation of the LCALL to the interrupt service routine.
Condition 2 ensures that the instruction in progress is completed before vectoring to any service
routine. Condition 3 ensures that if the instruction in progress is RETI or any write access to interrupt
enable or interrupt priority registers, then at least one more instruction will be executed before any
interrupt is vectored too; this delay guarantees that changes of the interrupt status can be observed
by the interrupt controller.

The polling cycle is repeated with each machine cycle, and the values polled are the values that
were present at the previous machine cycle. Note that if any interrupt flag is active but not being
responded to for one of the conditions already mentioned, or if the flag is no longer active when the
blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that
the interrupt flag was once active but not serviced is not remembered. Every polling cycle
interrogates only the pending interrupt requests.

The polling cycle/LCALL sequence is illustrated in figure 2-1. 
     

Figure 2-5
Interrupt Detection/Entry Diagram

Note that if an interrupt of a higher priority level goes active prior to S5P2 in the machine cycle
labeled C3 in figure 2-5 then, in accordance with the above rules, it will be vectored to during C5
and C6 without any instruction for the lower priority routine to be executed.

Thus, the processor acknowledges an interrupt request by executing a hardware-generated LCALL
to the appropriate servicing routine. In some cases it also clears the flag that generated the
interrupt, while in other cases it does not; then this has to be done by the user's software.

The program execution proceeds from that location until the RETI instruction is encountered. The
RETI instruction informs the processor that the interrupt routine is no longer in progress, then pops
the two top bytes from the stack and reloads the program counter. Execution of the interrupted
program continues from the point where it was stopped. Note that the RETI instruction is very
important because it informs the processor that the program left the current interrupt priority level.
A simple RET instruction would also have returned execution to the interrupted program, but it
would have left the interrupt control system thinking an interrupt was still in progress. In this case no
interrupt of the same or lower priority level would be acknowledged.

MCT01859

S5P2

Interrupt
is latched

Interrupts
are polled Vector Address

Long Call to Interrupt
Routine
Interrupt

C2C1 C3 C4 C5
Semiconductor Group 2-11 1998-04-01



CPU Functions
C500 Family
2.8 Interrupt Response Time    

If an external interrupt is recognized, its corresponding request flag is set at S5P2 in every machine
cycle. The value is not polled by the circuitry until the next machine cycle. If the request is active and
conditions are right for it to be acknowledged, a hardware subroutine call to the requested service
routine will be next instruction to be executed. The call itself takes two cycles. Thus a minimum of
three complete machine cycles will elapse between activation and external interrupt request and the
beginning of execution of the first instruction of the service routine.

A longer response time would be obtained if the request was blocked by one of the three previously
listed conditions. If an interrupt of equal or higher priority is already in progress, the additional wait
time obviously depends on the nature of the other interrupt's service routine. If the instruction in
progress is not in its final cycle, the additional wait time cannot be more than 3 cycles since the
longest instructions (MUL and DIV) are only 4 cycles long; and, if the instruction in progress is RETI
or a write access to interrupt enable or interrupt priority registers the additional wait time cannot be
more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4
cycles to complete the next instruction, if the instruction is MUL or DIV).

Thus a single interrupt system, the response time is always more than 3 cycles and less than
9 cycles.
Semiconductor Group 2-12 1998-04-01



CPU Timing
C500 Family
3 CPU Timing

3.1 Basic Timing 

A machine cycle consists of 6 states. Each state is divided into a phase 1 half, during which the
phase 1 clock is active, and a phase 2 half, during which the phase 2 clock is active. Thus, a
machine cycle consists of the states S1P1 (state 1, phase 1) through S6P2 (state 6, phase 2).
Depending on the C500 type of microcontroller, each state lasts either one or two periods of the
oscillator clock. Typically, arithmetic and logical operations take place during phase 1 and internal
register-to-register transfers take place during phase 2.

The diagrams in figure 3-1 show the fetch/execute timing related to the internal states and phases.
Since these internal clock signals are not user-accessible, the ALE (address latch enable) signal is
shown for external reference. ALE is normally activated twice during each machine cycle: once
during S1P2 and S2P1, and again during S4P2 and S5P1.

The execution of a one-cycle instruction begins at S1P2, when the opcode is latched into the
instruction register. If it is a two-byte instruction, the second reading takes place during S4 of the
same machine cycle. If it is a one-byte instruction, there is still a fetch at S4, but the byte read (which
would be the next op-code) is ignored (discarded fetch), and the program counter is not
incremented. In any case, execution is completed at the end of S6P2.

Figures 3-1 (a) and (b) show the timing of a 1-byte, 1-cycle instruction and for a 2-byte, 1-cycle
instruction.

Most C500 instructions are executed in one cycle. MUL (multiply) and DIV (divide) are the only
instructions that take more than two cycles to complete; they take four cycles. Normally two code
bytes are fetched from the program memory during every machine cycle. The only exception to this
is when a MOVX instruction is executed. MOVX is a one-byte, 2-cycle instruction that accesses
external data memory. During a MOVX, the two fetches in the second cycle are skipped while the
external data memory is being addressed and strobed. Figure 3-1 (c) and (d) show the timing for
a normal 1-byte, 2-cycle instruction and for a MOVX instruction.
Semiconductor Group 3-1 1998-04-01



CPU Timing
C500 Family
    
Figure 3-1
Fetch Execute Sequence

  
ALE

MCD02771

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
P1 P2 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1 P2P1

S1 S2 S3 S4 S5 S6

Read
Opcode Opcode (Discard)

Read next

a) 1 Byte, 1-Cycle Instruction, e.g. INC A

S6S5S4S3S2S1

S1 S2 S3 S4 S5 S6

d) MOVX (1 Byte, 2-Cycle)

Read next Opcode (Discard)

S6S5S4S3S2S1 S1 S2 S3 S4 S5 S6

Read next
Opcode again

 

Read 2nd
ByteOpcode

Read

Read
Opcode

Read next Opcode again

S6S5S4S3S2S1

Opcode
Read

(MOVX) (Discard)

Read next
Opcode No Fetch No Fetch

No ALE

Read next
Opcode

Access of External Memory

DATAADDR

Read next Opcode again

b) 2 Byte, 1-Cycle Instruction, e.g. ADD A, #Data

c) 1 Byte, 2-Cycle Instruction, e.g. INC DPTR
Semiconductor Group 3-2 1998-04-01



CPU Timing
C500 Family
3.2 Accessing External Memory

There are two types of external memory accesses: accesses to external program memory and
accesses to external data memory. Accesses to external program memory use the signal PSEN
(program store enable) as the read strobe. Accesses to external data memory use the RD or WR
(alternate functions of P3.7 and P3.6) to access the memory.

Fetches from external program memory always use a 16-bit address. Accesses to external data
memory can use either a 16-bit address (MOVX @DPTR) or an 8-bit address (MOVX @Ri).
Whenever a 16-bit address is used, the high byte of the address comes out on port 2, where it is
held for the duration of the read, write, or code fetch cycle. 

If an 8-bit address is being used (MOVX @Ri), the contents of the port 2 SFR remain at the port 2
pins throughout the whole external memory cycle. In this case, port 2 pins can be used to page the
external data memory.

In either case, the low byte of the address is time-multiplexed with the data byte on port 0. The
ADDRESS/DATA signal drives both FETS in the port 0 output buffers. Thus, in external bus mode
the port 0 pins are not open-drain outputs and do not require external pullups. The ALE (address
latch enable) signal should be used to latch the address byte into an external latch. The address
byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written
appears on port 0 just before WR is activated, and remains there until WR is deactivated. In a read
cycle, the incoming byte is accepted at port 0 just before the read strobe (RD) is deactivated.

During any access to external memory, the CPU writes FFH to the port 0 latch (the special function
register), thus obliterating the information in the port 0 SFR. Also, a MOV P0 instruction must not
take place during external memory accesses. If the user writes to port 0 during an external memory
fetch, the incoming code byte may be corrupted. Therefore, do not write to port 0 if external memory
is used.

3.2.1 Accessing External Program Memory

External program memory is accessed under two conditions:

1. Whenever signal EA is active (low), or
2. Whenever signal EA is inactive (high) and the program counter (PC) contains an address greater

than the internal ROM size (e.g. 1FFFFH for an 8K internal ROM or 3FFFH for an 16K internal
ROM).

This requires that the ROMless versions have always EA wired to Vss to enable the lower 8K, 16K,
or 32K program bytes to be fetched from external memory.

When the CPU is executing out from external program memory (see timing diagram in figure 3-2),
all 8 bits of port 2 are dedicated to an output function and may not be used for general purpose I/O.
During external program fetches they output the high byte of the PC with the port 2 drivers using the
strong pullups to emit bits that are 1«s.
Semiconductor Group 3-3 1998-04-01



CPU Timing
C500 Family
      
Figure 3-2
External Program Memory Fetches

3.2.2 Accessing External Data Memory

The port 2 drivers use the strong pullups during the entire time that they are emitting address bits
that are 1«s. This occurs when the MOVX @DPTR instruction is executed and when external
program fetches are executed. During this time the port 2 latch (the special function register) does
not have to contain 1«s, and the contents of the port 2 SFR are not modified. If the external memory
cycle is not immediately followed by another external memory cycle, the undisturbed contents of the
port 2 SFR will reappear in the next cycle.

Figure 3-3 and 3-4 show in detail the timings of the external data memory read and write cycles.

MCD02772

S1

P1 P2 P2P1

S2

P2P1

S3

P2P1

S4

P2P1

S5

P2P1

S6

P2P1

S1

P2P1

S2

ALE

PSEN

P0 PCL
Out

PCL PCL

P2 PCH Out

Data
Sampled Sampled

Data
Sampled
Data

States

Out Out

PCH Out PCH Out
Semiconductor Group 3-4 1998-04-01



CPU Timing
C500 Family
       
Figure 3-3
External Data Memory Read Cycle
       

Figure 3-4
External Data Memory Write Cycle 

MCD02773

S4

P1 P2 P2P1

S5

P2P1

S6

P2P1

S1

P2P1

S2

P2P1

S3

P2P1

S4

P2P1

S5

ALE

RD

P0 DPL or Ri
Out

P2

Sampled
Data

States

Float Float

PCL out if
program memory
is external

DPH or P2 SFR OutPCH or
P2 SFR

PCH or
P2 SFR

MCD02774

S4

P1 P2 P2P1

S5

P2P1

S6

P2P1

S1

P2P1

S2

P2P1

S3

P2P1

S4

P2P1

S5

ALE

WR

P0 DPL or Ri
Out

P2

States

PCL out if
program memory
is external

DPH or P2 SFR OutPCH or
P2 SFR

PCH or
P2 SFR

Data Out

PCL Out
Semiconductor Group 3-5 1998-04-01



Instruction Set
C500 Family
4 Instruction Set

The C500 8-bit microcontroller family instruction set includes 111 instructions, 49 of which are
single-byte, 45 two-byte and 17 three-byte instructions. The instruction opcode format consists of a
function mnemonic followed by a Ódestination, sourceÓ operand field. This field specifies the data
type and addressing method(s) to be used.

Like all other members of the 8051-family, the C500 microcontrollers can be programmed with the
same instruction set common to the basic member, the SAB 8051.
Thus, the C500 family microcontrollers are 100% software compatible to the SAB 8051 and may be
programmed with 8051 assembler or high-level languages.

4.1 Addressing Modes

The C500 uses five addressing modes:

Ð register
Ð direct
Ð immediate
Ð register indirect
Ð base register plus index-register indirect

Table 4-1 summarizes the memory spaces which may be accessed by each of the addressing
modes.

Register Addressing

Register addressing accesses the eight working registers (R0 - R7) of the selected register bank.
The least significant bit of the instruction opcode indicates which register is to be used. ACC, B,
DPTR and CY, the Boolean processor accumulator, can also be addressed as registers.

Direct Addressing

Direct addressing is the only method of accessing the special function registers. The lower
128 bytes of internal RAM are also directly addressable.

Immediate Addressing

Immediate addressing allows constants to be part of the instruction in program memory.

    
Semiconductor Group 4-1 1998-04-01



Instruction Set
C500 Family
Register Indirect Addressing

Register indirect addressing uses the contents of either R0 or R1 (in the selected register bank) as
a pointer to locations in a 256-byte block: the 256 bytes of internal RAM or the lower 256 bytes of
external data memory. Note that the special function registers are not accessible by this method.
The upper half of the internal RAM can be accessed by indirect addressing only. Access to the full
64 Kbytes of external data memory address space is accomplished by using the 16-bit data pointer.
Execution of PUSH and POP instructions also uses register indirect addressing. The stack may
reside anywhere in the internal RAM.

Base Register plus Index Register Addressing

Base register plus index register addressing allows a byte to be accessed from program memory
via an indirect move from the location whose address is the sum of a base register (DPTR or PC)
and index register, ACC. This mode facilitates look-up table accesses.

Boolean Processor

The Boolean processor is a bit processor integrated into the C500 family microcontrollers. It has its
own instruction set, accumulator (the carry flag), bit-addressable RAM and l/O.

The bit manipulation instructions allow:

Ð set bit
Ð clear bit
Ð complement bit
Ð jump if bit is set
Ð jump if bit is not set
Ð jump if bit is set and clear bit
Ð move bit from / to carry

Addressable bits, or their complements, may be logically AND-ed or OR-ed with the contents of the
carry flag. The result is returned to the carry register.

Table 4-1
Addressing Modes and Associated Memory Spaces

Addressing Modes Associated Memory Spaces

Register addressing R0 through R7 of selected register bank, ACC, 
B, CY (Bit), DPTR

Direct addressing Lower 128 bytes of internal RAM, special 
function registers

Immediate addressing Program memory

Register indirect addressing Internal RAM (@R1, @R0, SP), external data 
memory (@R1, @R0, @DPTR)

Base register plus index register addressing Program memory (@A + DPTR, @A + PC)
Semiconductor Group 4-2 1998-04-01



Instruction Set
C500 Family
4.2 Introduction to the Instruction Set

The instruction set is divided into four functional groups:

Ð data transfer
Ð arithmetic
Ð logic
Ð control transfer

4.2.1 Data Transfer Instructions

Data transfer operations are divided into three classes:

Ð general-purpose
Ð accumulator-specific
Ð address-object

None of these operations affects the PSW flag settings except a POP or MOV directly to the PSW.

General-Purpose Transfers

Ð MOV performs a bit or byte transfer from the source operand to the destination operand.
Ð PUSH increments the SP register and then transfers a byte from the source operand to the

stack location currently addressed by SP.
Ð POP transfers a byte operand from the stack location addressed by the SP to the destination

operand and then decrements SP.

Accumulator-Specific Transfers

Ð XCH exchanges the byte source operand with register A (accumulator).
Ð XCHD exchanges the low-order nibble of the source operand byte with the low-order nibble

of A.
Ð MOVX performs a byte move between the external data memory and the accumulator. The

external address can be specified by the DPTR register (16 bit) or the R1 or R0 register (8 bit).
Ð MOVC moves a byte from program memory to the accumulator. The operand in A is used as

an index into a 256-byte table pointed to by the base register (DPTR or PC). The byte operand
accessed is transferred to the accumulator.

Address-Object Transfer

Ð MOV DPTR, #data loads 16 bits of immediate data into a pair of destination registers, DPH
and DPL.
Semiconductor Group 4-3 1998-04-01



Instruction Set
C500 Family
4.2.2 Arithmetic Instructions

The C500 family microcontrollers have four basic mathematical operations. Only 8-bit operations
using unsigned arithmetic are supported directly. The overflow flag, however, permits the addition
and subtraction operation to serve for both unsigned and signed binary integers. Arithmetic can also
be performed directly on packed BCD representations.

Addition

Ð INC (increment) adds one to the source operand and puts the result in the operand (flags in
PSW are not affected).

Ð ADD adds A to the source operand and returns the result to A.
Ð ADDC (add with carry) adds A and the source operand, then adds one (1) if CY is set, and

puts the result in A.
Ð DA (decimal-add-adjust for BCD addition) corrects the sum which results from the binary

addition of two-digit decimal operands. The packed decimal sum formed by DA is returned to
A. CY is set if the BCD result is greater than 99; otherwise, it is cleared.

Subtraction

Ð SUBB (subtract with borrow) subtracts the second source operand from the first operand (the
accumulator), subtracts one (1) if CY is set and returns the result to A.

Ð DEC (decrement) subtracts one (1) from the source operand and returns the result to the
operand (flags in PSW are not affected).

Multiplication

Ð MUL performs an unsigned multiplication of the A register by the B register, returning a double
byte result. A receives the low-order byte, B receives the high-order byte. OV is cleared if the
top half of the result is zero and is set if it is not zero. CY is cleared. AC is unaffected.

Division

Ð DIV performs an unsigned division of the A register by the B register; it returns the integer
quotient to the A register and returns the fractional remainder to the B register. Division by
zero leaves indeterminate data in registers A and B and sets OV; otherwise, OV is cleared.
CY is cleared. AC remains unaffected.

Flags

Unless otherwise stated in the previous descriptions, the flags of PSW are affected as follows:

Ð CY is set if the operation causes a carry to or a borrow from the resulting high-order bit;
otherwise CY is cleared.

Ð AC is set if the operation results in a carry from the low-order four bits of the result (during
addition), or a borrow from the high-order bits to the low-order bits (during subtraction);
otherwise AC is cleared.

Ð OV is set if the operation results in a carry to the high-order bit of the result but not a carry
from the bit, or vice versa; otherwise OV is cleared. OV is used in twoÕs-complement
arithmetic, because it is set when the signal result cannot be represented in 8 bits.

Ð P is set if the modulo-2 sum of the eight bits in the accumulator is 1 (odd parity); otherwise P
is cleared (even parity). When a value is written to the PSW register, the P bit remains
unchanged, as it always reflects the parity of A.
Semiconductor Group 4-4 1998-04-01



Instruction Set
C500 Family
4.2.3 Logic Instructions

The C500 family microcontrollers perform basic logic operations on both bit and byte operands.

Single-Operand Operations

Ð CLR sets A or any directly addressable bit to zero (0).
Ð SETB sets any directly bit-addressable bit to one (1).
Ð CPL is used to complement the contents of the A register without affecting any flag, or any

directly addressable bit location.
Ð RL, RLC, RR, RRC, SWAP are the five operations that can be performed on A. RL, rotate left,

RR, rotate right, RLC, rotate left through carry, RRC, rotate right through carry, and SWAP,
rotate left four. For RLC and RRC the CY flag becomes equal to the last bit rotated out. SWAP
rotates A left four places to exchange bits 3 through 0 with bits 7 through 4.

Two-Operand Operations

Ð ANL performs bitwise logical AND of two operands (for both bit and byte operands) and
returns the result to the location of the first operand.

Ð ORL performs bitwise logical OR of two source operands (for both bit and byte operands) and
returns the result to the location of the first operand.

Ð XRL performs logical Exclusive OR of two source operands (byte operands) and returns the
result to the location of the first operand.

4.2.4 Control Transfer Instructions

There are three classes of control transfer operations: unconditional calls, returns, jumps,
conditional jumps, and interrupts. All control transfer operations, some upon a specific condition,
cause the program execution to continue a non-sequential location in program memory.
Semiconductor Group 4-5 1998-04-01



Instruction Set
C500 Family
Unconditional Calls, Returns and Jumps

Unconditional calls, returns and jumps transfer control from the current value of the program
counter to the target address. Both direct and indirect transfers are supported.

Ð ACALL and LCALL push the address of the next instruction onto the stack and then transfer
control to the target address. ACALL is a 2-byte instruction used when the target address is
in the current 2K page. LCALL is a 3-byte instruction that addresses the full 64K program
space. In ACALL, immediate data (i.e. an 11-bit address field) is concatenated to the five most
significant bits of the PC (which is pointing to the next instruction). If ACALL is in the last 2
bytes of a 2K page then the call will be made to the next page since the PC will have been
incremented to the next instruction prior to execution.

Ð RET transfers control to the return address saved on the stack by a previous call operation
and decrements the SP register by two (2) to adjust the SP for the popped address.

Ð AJMP, LJMP and SJMP transfer control to the target operand. The operation of AJMP and
LJMP are analogous to ACALL and LCALL. The SJMP (short jump) instruction provides for
transfers within a 256-byte range centered about the starting address of the next instruction
(Ð 128 to + 127).

Ð JMP @A + DPTR performs a jump relative to the DPTR register. The operand in A is used as
the offset (0 - 255) to the address in the DPTR register. Thus, the effective destination for a
jump can be anywhere in the program memory space.

Conditional Jumps

Conditional jumps perform a jump contingent upon a specific condition. The destination will be
within a 256-byte range centered about the starting address of the next instruction (Ð 128 to + 127).

Ð JZ performs a jump if the accumulator is zero.
Ð JNZ performs a jump if the accumulator is not zero.
Ð JC performs a jump if the carry flag is set.
Ð JNC performs a jump if the carry flag is not set.
Ð JB performs a jump if the directly addressed bit is set.
Ð JNB performs a jump if the directly addressed bit is not set.
Ð JBC performs a jump if the directly addressed bit is set and then clears the directly addressed

bit.
Ð CJNE compares the first operand to the second operand and performs a jump if they are not

equal. CY is set if the first operand is less than the second operand; otherwise it is cleared.
Comparisons can be made between A and directly addressable bytes in internal data memory
or an immediate value and either A, a register in the selected register bank, or a register
indirectly addressable byte of the internal RAM.

Ð DJNZ decrements the source operand and returns the result to the operand. A jump is
performed if the result is not zero. The source operand of the DJNZ instruction may be any
directly addressable byte in the internal data memory. Either direct or register addressing may
be used to address the source operand.

Interrupt Returns

Ð RETI transfers control as RET does, but additionally enables interrupts of the current priority
level.
Semiconductor Group 4-6 1998-04-01



Instruction Set
C500 Family
4.3 Instruction Definitions

All 111 instructions of the C500 family microcontrollers can essentially be condensed to 53 basic
operations, in the following alphabetically ordered according to the operation mnemonic section.    

A brief example of how the instruction might be used is given as well as its effect on the PSW flags.
The number of bytes and machine cycles required, the binary machine language encoding, and a
symbolic description or restatement of the function is also provided.

Note:

Only the carry, auxiliary carry, and overflow flags are discussed. The parity bit is always computed
from the actual content of the accumulator.

Similarly, instructions which alter directly addressed registers could affect the other status flags if
the instruction is applied to the PSW. Status flags can also be modified by bit manipulation.

Table 4-2
PSW Flag Modification (CY,OV,AC)

Instruction Flag Instruction Flag

CY OV AC CY OV AC

ADD X X X SETB C 1

ADDC X X X CLR C 0

SUBB X X X CPL C X

MUL 0 X ANL C,bit X

DIV 0 X ANL C,/bit X

DA X ORL C,bit X

RRC X ORL C,/bit X

RLC X MOV C,bit X

CJNE X
Semiconductor Group 4-7 1998-04-01



Instruction Set
C500 Family
Notes on Data Addressing Modes:

Rn - Working register R0-R7

direct - 128 internal RAM locations, any l/O port, control or status register

@Ri - Indirect internal or external RAM location addressed by register R0 or R1

#data - 8-bit constant included in instruction

#data 16 - 16-bit constant included as bytes 2 and 3 of instruction

bit - 128 software flags, any bit-addressable l/O pin, control or status bit

A - Accumulator

Notes on Program Addressing Modes:

addr16 - Destination address for LCALL and LJMP may be anywhere within the 64-Kbyte 
program memory address space.

addr11 - Destination address for ACALL and AJMP will be within the same 2-Kbyte page of 
program memory as the first byte of the following instruction.

rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is + 127/Ð 128 
bytes relative to the first byte of the following instruction.

All mnemonics copyrighted: ã Intel Corporation 1980
Semiconductor Group 4-8 1998-04-01



Instruction Set
C500 Family
ACALL addr11

Function: Absolute call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The 
instruction increments the PC twice to obtain the address of the following 
instruction, then pushes the 16-bit result onto the stack (low-order byte first) and 
increments the stack pointer twice. The destination address is obtained by 
successively concatenating the five high-order bits of the incremented PC, op code 
bits 7-5, and the second byte of the instruction. The subroutine called must 
therefore start within the same 2K block of program memory as the first byte of the 
instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label ÓSUBRTNÓ is at program memory location 0345H. 
After executing the instruction

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM location 08H and 09H will 
contain 25H and 01H, respectively, and the PC will contain 0345H.

Operation: ACALL
(PC) ¬ (PC) + 2
(SP) ¬ (SP) + 1
((SP)) ¬ (PC7-0)
(SP) ¬ (SP) + 1
((SP)) ¬ (PC15-8)
(PC10-0) ¬ page address   

Bytes: 2

Cycles: 2

Encoding: a10  a9  a8  1 0  0  0  1 a7  a6  a5  a4 a3  a2  a1  a0
Semiconductor Group 4-9 1998-04-01



Instruction Set
C500 Family
ADD A, <src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the accumulator, leaving the result in the 
accumulator. The carry and auxiliary carry flags are set, respectively, if there is a 
carry out of bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, 
the carry flag indicates an overflow occurred.

OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but 
not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates 
a negative number produced as the sum of two positive operands, or a positive sum 
from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH  
(10101010B). 
The instruction

ADD A,R0

will leave 6DH (01101101B) in the accumulator with the AC flag cleared and both 
the carry flag and OV set to 1.

ADD A,Rn

Operation: ADD
(A) ¬ (A) + (Rn)    

Bytes: 1

Cycles: 1

ADD A,direct

Operation: ADD
(A) ¬ (A) + (direct)    

Bytes: 2

Cycles: 1

Encoding: 0  0  1  0 1  r  r  r

Encoding: 0  0  1  0 0  1  0  1 direct address
Semiconductor Group 4-10 1998-04-01



Instruction Set
C500 Family
ADD A, @Ri

Operation: ADD
(A) ¬ (A) + ((Ri))  

Bytes: 1

Cycles: 1

ADD A, #data

Operation: ADD
(A) ¬ (A) + #data    

Bytes: 2

Cycles: 1

Encoding: 0  0  1  0 0  1  1  i

Encoding: 0  0  1  0 0  1  0  0 immediate data
Semiconductor Group 4-11 1998-04-01



Instruction Set
C500 Family
ADDC A, < src-byte>

Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the 
accumulator contents, leaving the result in the accumulator. The carry and auxiliary 
carry flags are set, respectively, if there is a carry out of bit 7 or bit 3, and cleared 
otherwise. When adding unsigned integers, the carry flag indicates an overflow 
occurred.

OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but 
not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates 
a negative number produced as the sum of two positive operands or a positive sum 
from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) 
with the carry flag set. The instruction

ADDC A,R0

will leave 6EH (01101110B) in the accumulator with AC cleared and both the carry 
flag and OV set to 1.

ADDC A,Rn

Operation: ADDC
(A) ¬ (A) + (C) + (Rn)   

Bytes: 1

Cycles: 1

ADDC A,direct

Operation: ADDC
(A) ¬ (A) + (C) + (direct)    

Bytes: 2

Cycles: 1

Encoding: 0  0  1  1 1  r  r  r

Encoding: 0  0  1  1 0  1  0  1 direct address
Semiconductor Group 4-12 1998-04-01



Instruction Set
C500 Family
ADDC A, @Ri

Operation: ADDC
(A) ¬ (A) + (C) + ((Ri))   

Bytes: 1

Cycles: 1

ADDC A, #data

Operation: ADDC
(A) ¬ (A) + (C) + #data    

Bytes: 2

Cycles: 1

Encoding: 0  0  1  1 0  1  1  i

Encoding: 0  0  1  1 0  1  0  0 immediate data
Semiconductor Group 4-13 1998-04-01



Instruction Set
C500 Family
AJMP addr11

Function: Absolute jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-
time by concatenating the high-order five bits of the PC (after incrementing the PC 
twice), op code bits 7-5, and the second byte of the instruction. The destination must 
therefore be within the same 2K block of program memory as the first byte of the 
instruction following AJMP.

Example: The label ÓJMPADRÓ is at program memory location 0123H. The instruction

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.

Operation: AJM P
(PC) ¬ (PC) + 2
(PC10-0) ¬ page address  

Bytes: 2

Cycles: 2

Encoding: a10  a9  a8  0 0  0  0  1 a7  a6  a5  a4 a3  a2  a1  a0
Semiconductor Group 4-14 1998-04-01



Instruction Set
C500 Family
ANL <dest-byte>, <src-byte>

Function: Logical AND for byte variables

Description: ANL performs the bitwise logical AND operation between the variables indicated 
and stores the results in the destination variable. No flags are affected (except P, if 
<dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination 
is a accumulator, the source can use register, direct, register-indirect, or immediate 
addressing; when the destination is a direct address, the source can be the 
accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH 
(10101010B) then the instruction

ANL A,R0

will leave 81H (10000001B) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear 
combinations of bits in any RAM location or hardware register. The mask byte 
determining the pattern of bits to be cleared would either be a constant contained 
in the instruction or a value computed in the accumulator at run-time.
The instruction

ANL P1, #01110011B
will clear bits 7, 3, and 2 of output port 1.

ANL A,Rn

Operation: ANL
(A) ¬ (A) Ù (Rn)    

Bytes: 1

Cycles: 1

ANL A,direct

Operation: ANL
(A) ¬ (A) Ù (direct)    

Bytes: 2

Cycles: 1

Encoding: 0  1  0  1 1  r  r  r

Encoding: 0  1  0  1 0  1  0  1 direct address
Semiconductor Group 4-15 1998-04-01



Instruction Set
C500 Family
ANL A, @Ri

Operation: ANL
(A) ¬ (A) Ù ((Ri))    

Bytes: 1

Cycles: 1

ANL A, #data

Operation: ANL
(A) ¬ (A) Ù #data   

Bytes: 2

Cycles: 1

ANL direct,A

Operation: ANL
(direct) ¬ (direct) Ù (A)   

Bytes: 2

Cycles: 1

Encoding: 0  1  0  1 0  1  1  i

Encoding: 0  1  0  1 0  1  0  0 immediate data

Encoding: 0  1  0  1 0  0  1  0 direct address
Semiconductor Group 4-16 1998-04-01



Instruction Set
C500 Family
ANL direct, #data

Operation: ANL
(direct) ¬ (direct) Ù #data    

Bytes: 3

Cycles: 2

Encoding: 0  1  0  1 0  0  1  1 direct address immediate data
Semiconductor Group 4-17 1998-04-01



Instruction Set
C500 Family
ANL C, <src-bit>

Function: Logical AND for bit variables

Description: If the Boolean value of the source bit is a logic 0 then clear the carry flag; otherwise 
leave the carry flag in its current state. A slash (Ó/Ó preceding the operand in the 
assembly language indicates that the logical complement of the addressed bit is 
used as the source value, but the source bit itself is not affected. No other flags are 
affected.

Only direct bit addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ; Load carry with input pin state
ANL C,ACC.7 ; AND carry with accumulator bit 7
ANL C,/OV ; AND with inverse of overflow flag

ANL C,bit

Operation: ANL
(C) ¬ (C) Ù (bit)    

Bytes: 2

Cycles: 2

ANL C,/bit

Operation: ANL
(C) ¬ (C) Ù / (bit)    

Bytes: 2

Cycles: 2

Encoding: 1  0  0  0 0  0  1  0 bit address

Encoding: 1  0  1  1 0  0  0  0 bit address
Semiconductor Group 4-18 1998-04-01



Instruction Set
C500 Family
CJNE <dest-byte >, < src-byte >, rel

Function: Compare and jump if not equal

Description: CJNE compares the magnitudes of the tirst two operands, and branches if their 
values are not equal. The branch destination is computed by adding the signed 
relative displacement in the last instruction byte to the PC, after incrementing the 
PC to the start of the next instruction. The carry flag is set if the unsigned integer 
value of <dest-byte> is less than the unsigned integer value of <src-byte>; 
otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator 
may be compared with any directly addressed byte or immediate data, and any 
indirect RAM location or working register can be compared with an immediate 
constant.

Example: The accumulator contains 34H. Register 7 contains 56H. The first instruction in the 
sequence

CJNE R7, # 60H, NOT_EQ
; . . . . . . . . ; R7 = 60H
NOT_EQ JC REQ_LOW ; If R7 < 60H
; . . . . . . . . ; R7 > 60H
sets the carry flag and branches to the instruction at label NOT_EQ. By testing the 
carry flag, this instruction determines whether R7 is greater or less than 60H.

If the data being presented to port 1 is also 34H, then the instruction

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the 
accumulator does equal the data read from P1. (If some other value was input on 
P1, the program will loop at this point until the P1 data changes to 34H).
Semiconductor Group 4-19 1998-04-01



Instruction Set
C500 Family
CJNE A,direct,rel

Operation: (PC) ¬ (PC) + 3
if (A) < > (direct)
then (PC) ¬ (PC) + relative offset
if (A) < (direct)
then (C) ¬1
else (C) ¬ 0    

Bytes: 3

Cycles: 2

CJNE A, #data,rel

Operation: (PC) ¬ (PC) + 3
if (A) < > data
then (PC) ¬ (PC) + relative offset
if (A) ¬ data
then (C) ¬1
else (C) ¬ 0    

Bytes: 3

Cycles: 2

CJNE RN, #data, rel

Operation: (PC) ¬ (PC) + 3
if (Rn) < > data
then (PC) ¬ (PC) + relative offset
if (Rn) < data
then (C) ¬ 1
else (C) ¬ 0   

Bytes: 3

Cycles: 2

Encoding: 1  0  1  1 0  1  0  1 direct address rel. address

Encoding: 1  0  1  1 0  1  0  0 immediate data rel. address

Encoding: 1  0  1  1 1  r  r  r immediate data rel. address
Semiconductor Group 4-20 1998-04-01



Instruction Set
C500 Family
CJNE @Ri, #data, rel

Operation: (PC) ¬ (PC) + 3
if ((Ri)) < > data
then (PC) ¬ (PC) + relative offset
if ((Ri)) < data
then (C) ¬ 1
else (C) ¬ 0    

Bytes: 3

Cycles: 2

Encoding: 1  0  1  1 0  1  1  i immediate data rel. address
Semiconductor Group 4-21 1998-04-01



Instruction Set
C500 Family
CLR A

Function: Clear accumulator

Description: The accumulator is cleared (all bits set to zero). No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

will leave the accumulator set to 00H (00000000B).

Operation: CLR
(A) ¬ 0    

Bytes: 1

Cycles: 1

Encoding: 1  1  1  0 0  1  0  0
Semiconductor Group 4-22 1998-04-01



Instruction Set
C500 Family
CLR bit

Function: Clear bit

Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can 
operate on the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction

CLR P1.2

will leave the port set to 59H (01011001B).

CLR C

Operation: CLR
(C) ¬ 0   

Bytes: 1

Cycles: 1

CLR bit

Operation: CLR
(bit) ¬ 0  

Bytes: 2

Cycles: 1

Encoding: 1  1  0  0 0  0  1  1

Encoding: 1  1  0  0 0  0  1  0 bit address
Semiconductor Group 4-23 1998-04-01



Instruction Set
C500 Family
CPL A

Function: Complement accumulator

Description: Each bit of the accumulator is logically complemented (oneÕs complement). Bits 
which previously contained a one are changed to zero and vice versa. No flags are 
affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CPL A

will leave the accumulator set to 0A3H (10100011B).

Operation: CPL
(A) ¬  / (A)  

Bytes: 1

Cycles: 1

Encoding: 1  1  1  1 0  1  0  0
Semiconductor Group 4-24 1998-04-01



Instruction Set
C500 Family
CPL bit

Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is changed 
to zero and vice versa. No other flags are affected. CPL can operate on the carry or 
any directly addressable bit.

Note:

When this instruction is used to modify an output pin, the value used as the original 
data will be read from the output data latch, not the input pin.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction 
sequence

CPL P1.1 
CPL P1.2

will leave the port set to 5BH (01011011B).

CPL C

Operation: CPL
(bit) ¬  / (C)   

Bytes: 1

Cycles: 1

CPL bit

Operation: CPL
(C) ¬  (bit) 

Bytes: 2

Cycles: 1

Encoding: 1  0  1  1 0  0  1  1

Encoding: 1  0  1  1 0  0  1  0 bit address
Semiconductor Group 4-25 1998-04-01



Instruction Set
C500 Family
DA A

Function: Decimal adjust accumulator for addition

Description: DA A adjusts the eight-bit value in the accumulator resulting from the earlier 
addition of two variables (each in packed BCD format), producing two four-bit digits. 
Any ADD or ADDC instruction may have been used to perform the addition.

If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag 
is one, six is added to the accumulator producing the proper BCD digit in the low-
order nibble. This internal addition would set the carry flag if a carry-out of the low-
order four-bit field propagated through all high-order bits, but it would not clear the 
carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-
1111xxxx), these high-order bits are incremented by six, producing the proper BCD 
digit in the high-order nibble. Again, this would set the carry flag if there was a carry-
out of the high-order bits, but wouldnÕt clear the carry. The carry flag thus indicates 
if the sum of the original two BCD variables is greater than 100, allowing multiple 
precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially; this instruction 
performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the 
accumulator, depending on initial accumulator and PSW conditions.

Note:

DA A cannot simply convert a hexadecimal number in the accumulator to BCD 
notation, nor does DA A apply to decimal subtraction.

Example: The accumulator holds the value 56H (01010110B) representing the packed BCD 
digits of the decimal number 56. Register 3 contains the value 67H (01100111B) 
representing the packed BCD digits of the decimal number 67. The carry flag is set. 
The instruction sequence

ADDC A,R3
DA A

will first perform a standard twoÕs-complement binary addition, resulting in the value 
0BEH (10111110B) in the accumulator. The carry and auxiliary carry flags will be 
cleared.

The decimal adjust instruction will then alter the accumulator to the value 24H 
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-
order two digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be 
set by the decimal adjust instruction, indicating that a decimal overflow occurred. 
The true sum 56, 67, and 1 is 124.
Semiconductor Group 4-26 1998-04-01



Instruction Set
C500 Family
BCD variables can be incremented or decremented by adding 01H or 99H. If the 
accumulator initially holds 30H (representing the digits of 30 decimal), then the 
instruction sequence

ADD A, #99H
DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The low-
order byte of the sum can be interpreted to mean 30 Ð 1 = 29.

Operation: DA
contents of accumulator are BCD
if [[(A3-0) > 9] Ú [(AC) = 1]]
then (A3-0) ¬ (A3-0) + 6
and
if [[(A7-4) > 9] Ú [(C) = 1]]
then (A7-4) ¬ (A7-4) + 6    

Bytes: 1

Cycles: 1

Encoding: 1  1  0  1 0  1  0  0
Semiconductor Group 4-27 1998-04-01



Instruction Set
C500 Family
DEC byte

Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00H will underflow 
to 0FFH. No flags are affected. Four operand addressing modes are allowed: 
accumulator, register, direct, or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH 
contain 00H and 40H, respectively. The instruction sequence

DEC @R0
DEC R0
DEC @R0

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 
0FFH and 3FH.

DEC A

Operation: DEC
(A) ¬ (A) Ð 1   

Bytes: 1

Cycles: 1

DEC Rn

Operation: DEC
(Rn) ¬ (Rn) Ð 1   

Bytes: 1

Cycles: 1

Encoding: 0  0  0  1 0  1  0  0

Encoding: 0  0  0  1 1  r  r  r
Semiconductor Group 4-28 1998-04-01



Instruction Set
C500 Family
DEC direct

Operation: DEC
(direct) ¬ (direct) Ð 1  

Bytes: 2

Cycles: 1

DEC @Ri

Operation: DEC
((Ri)) ¬ ((Ri)) Ð 1   

Bytes: 1

Cycles: 1

Encoding: 0  0  0  1 0  1  0  1 direct address

Encoding: 0  0  0  1 0  1  1  i
Semiconductor Group 4-29 1998-04-01



Instruction Set
C500 Family
DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned 
eight-bit integer in register B. The accumulator receives the integer part of the 
quotient; register B receives the integer remainder. The carry and OV flags will be 
cleared.

Exception: If B had originally contained 00H, the values returned in the accumulator 
and B register will be undefined and the overflow flag will be set. The carry flag is 
cleared in any case.

Example: The accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 
00010010B). The instruction

DIV AB

will leave 13 in the accumulator (0DH or 00001101B) and the value 17 (11H or 
00010001B) in B, since 251 = (13x18) + 17. Carry and OV will both be cleared.

Operation: DIV

(A15-8)     
(B7-0)    

Bytes: 1

Cycles: 4

Encoding: 1  0  0  0 0  1  0  0

¬ (A) / (B)
Semiconductor Group 4-30 1998-04-01



Instruction Set
C500 Family
DJNZ <byte>, <rel-addr>

Function: Decrement and jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the address 
indicated by the second operand if the resulting value is not zero. An original value 
of 00H will underflow to 0FFH. No flags are affected. The branch destination would 
be computed by adding the signed relative-displacement value in the last instruction 
byte to the PC, after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note:

When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values, 01H, 70H, and 15H, 
respectively. The instruction sequence

DJNZ 40H,LABEL_1
DJNZ 50H,LABEL_2
DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and 
15H in the three RAM locations. The first jump was not taken because the result was 
zero.

This instruction provides a simple way of executing a program loop a given number 
of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a 
single instruction. The instruction sequence

MOV R2, #8
TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output 
port 1. Each pulse will last three machine cycles; two for DJNZ and one to alter the 
pin.
Semiconductor Group 4-31 1998-04-01



Instruction Set
C500 Family
DJNZ Rn,rel

Operation: DJNZ
(PC) ¬ (PC) + 2
(Rn) ¬ (Rn) Ð 1
if (Rn) > 0 or (Rn) < 0
then (PC) ¬ (PC) + rel    

Bytes: 2

Cycles: 2

DJNZ direct,rel

Operation: DJNZ
(PC) ¬ (PC) + 2
(direct) ¬ (direct) Ð 1
if (direct) > 0 or (direct) < 0
then (PC) ¬ (PC) + rel   

Bytes: 3

Cycles: 2

Encoding: 1  1  0  1 1  r  r  r rel. address

Encoding: 1  1  0  1 0  1  0  1 direct address rel. address
Semiconductor Group 4-32 1998-04-01



Instruction Set
C500 Family
INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH will overflow 
to 00H. No flags are affected. Three addressing modes are allowed: register, direct, 
or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7EH (01111110B). Internal RAM locations 7EH and 7FH 
contain 0FFH and 40H, respectively. The instruction sequence

INC @R0
INC R0
INC @R0

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding 
(respectively) 00H and 41H.

INC A

Operation: INC
(A) ¬ (A) + 1  

Bytes: 1

Cycles: 1

INC Rn

Operation: INC
(Rn) ¬ (Rn) + 1    

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  1  0  0

Encoding: 0  0  0  0 1  r  r  r
Semiconductor Group 4-33 1998-04-01



Instruction Set
C500 Family
INC direct

Operation: INC
(direct) ¬ (direct) + 1   

Bytes: 2

Cycles: 1

INC @Ri

Operation: INC
((Ri)) ¬ ((Ri)) + 1    

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  1  0  1 direct address

Encoding: 0  0  0  0 0  1  1  i
Semiconductor Group 4-34 1998-04-01



Instruction Set
C500 Family
INC DPTR

Function: Increment data pointer

Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; 
an overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will 
increment the high-order byte (DPH). No flags are affected.

This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction 
sequence

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and 01H.

Operation: INC
(DPTR) ¬ (DPTR) + 1   

Bytes: 1

Cycles: 2

Encoding: 1  0  1  0 0  0  1  1
Semiconductor Group 4-35 1998-04-01



Instruction Set
C500 Family
JB bit,rel

Function: Jump if bit is set

Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with 
the next instruction. The branch destination is computed by adding the signed 
relative-displacement in the third instruction byte to the PC, after incrementing the 
PC to the first byte of the next instruction. The bit tested is not modified. No flags 
are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56 
(01010110B). The instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

will cause program execution to branch to the instruction at label LABEL2.

Operation: JB
(PC) ¬ (PC) + 3
if (bit) = 1
then (PC) ¬ (PC) + rel    

Bytes: 3

Cycles: 2

Encoding: 0  0  1  0 0  0  0  0 bit address rel. address
Semiconductor Group 4-36 1998-04-01



Instruction Set
C500 Family
JBC bit,rel

Function: Jump if bit is set and clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with 
the next instruction. In either case, clear the designated bit. The branch destination 
is computed by adding the signed relative displacement in the third instruction byte 
to the PC, after incrementing the PC to the first byte of the next instruction. No flags 
are affected.

Note:

When this instruction is used to test an output pin, the value used as the original 
data will be read from the output data latch, not the input pin.

Example: The accumulator holds 56H (01010110B). The instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the label 
LABEL2, with the accumulator modified to 52H (01010010B).

Operation: JBC
(PC) ¬ (PC) + 3
if (bit) = 1
then (bit) ¬ 0
        (PC) ¬ (PC) + rel    

Bytes: 3

Cycles: 2

Encoding: 0  0  0  1 0  0  0  0 bit address rel. address
Semiconductor Group 4-37 1998-04-01



Instruction Set
C500 Family
JC rel

Function: Jump if carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the 
next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC 
twice. No flags are affected.

Example: The carry flag is cleared. The instruction sequence

JC LABEL1
CPL C
JC LABEL2

will set the carry and cause program execution to continue at the instruction 
identified by the label LABEL2.

Operation: JC
(PC) ¬ (PC) + 2
if (C) = 1
then (PC) ¬ (PC) + rel    

Bytes: 2

Cycles: 2

Encoding: 0  1  0  0 0  0  0  0 rel. address
Semiconductor Group 4-38 1998-04-01



Instruction Set
C500 Family
JMP @A + DPTR

Function: Jump indirect

Description: Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data 
pointer, and load the resulting sum to the program counter. This will be the address 
for subsequent instruction fetches. Sixteen-bit addition is performed (modulo 216): a 
carry-out from the low-order eight bits propagates through the higher-order bits. 
Neither the accumulator nor the data pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the accumulator. The following sequence of 
instructions will branch to one of four AJMP instructions in a jump table starting at 
JMP_TBL:

MOV DPTR, #JMP_TBL
JMP @A + DPTR 

JMP_TBL: AJMP LABEL0
AJMP LABEL1
AJMP LABEL2
AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution will jump to 
label LABEL2. Remember that AJMP is a two-byte instruction, so the jump 
instructions start at every other address.

Operation: JMP
(PC) ¬ (A) + (DPTR)    

Bytes: 1

Cycles: 2

Encoding: 0  1  1  1 0  0  1  1
Semiconductor Group 4-39 1998-04-01



Instruction Set
C500 Family
JNB bit,rel

Function: Jump if bit is not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with 
the next instruction. The branch destination is computed by adding the signed 
relative-displacement in the third instruction byte to the PC, after incrementing the 
PC to the first byte of the next instruction. The bit tested is not modified. No flags 
are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56H 
(01010110B). The instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.

Operation: JNB
(PC) ¬ (PC) + 3
if (bit) = 0
then (PC) ¬ (PC) + rel.    

Bytes: 3

Cycles: 2

Encoding: 0  0  1  1 0  0  0  0 bit address rel. address
Semiconductor Group 4-40 1998-04-01



Instruction Set
C500 Family
JNC rel

Function: Jump if carry is not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with 
the next instruction. The branch destination is computed by adding the signed 
relative-displacement in the second instruction byte to the PC, after incrementing 
the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The instruction sequence

JNC LABEL1
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction 
identified by the label LABEL2.

Operation: JNC
(PC) ¬ (PC) + 2
if (C) = 0
then (PC) ¬ (PC) + rel   

Bytes: 2

Cycles: 2

Encoding: 0  1  0  1 0  0  0  0 rel. address
Semiconductor Group 4-41 1998-04-01



Instruction Set
C500 Family
JNZ rel

Function: Jump if accumulator is not zero

Description: If any bit of the accumulator is a one, branch to the indicated address; otherwise 
proceed with the next instruction. The branch destination is computed by adding the 
signed relative-displacement in the second instruction byte to the PC, after 
incrementing the PC twice. The accumulator is not modified. No flags are affected.

Example: The accumulator originally holds 00H. The instruction sequence

JNZ LABEL1
INC A
JNZ LABEL2

will set the accumulator to 01H and continue at label LABEL2.

Operation: JNZ
(PC) ¬ (PC) + 2
if (A) ¹ 0
then (PC) ¬ (PC) + rel.    

Bytes: 2

Cycles: 2

Encoding: 0  1  1  1 0  0  0  0 rel. address
Semiconductor Group 4-42 1998-04-01



Instruction Set
C500 Family
JZ rel

Function: Jump if accumulator is zero

Description: If all bits of the accumulator are zero, branch to the address indicated; otherwise 
proceed with the next instruction. The branch destination is computed by adding the 
signed relative-displacement in the second instruction byte to the PC, after 
incrementing the PC twice. The accumulator is not modified. No flags are affected.

Example: The accumulator originally contains 01H. The instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

will change the accumulator to 00H and cause program execution to continue at the 
instruction identified by the label LABEL2.

Operation: JZ
(PC) ¬ (PC) + 2
if (A) = 0
then (PC) ¬ (PC) + rel    

Bytes: 2

Cycles: 2

Encoding: 0  1  1  0 0  0  0  0 rel. address
Semiconductor Group 4-43 1998-04-01



Instruction Set
C500 Family
LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds 
three to the program counter to generate the address of the next instruction and 
then pushes the 16-bit result onto the stack (low byte first), incrementing the stack 
pointer by two. The high-order and low-order bytes of the PC are then loaded, 
respectively, with the second and third bytes of the LCALL instruction. Program 
execution continues with the instruction at this address. The subroutine may 
therefore begin anywhere in the full 64 Kbyte program memory address space. No 
flags are affected.

Example: Initially the stack pointer equals 07H. The label ÒSUBRTNÓ is assigned to program 
memory location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer will contain 09H, internal RAM locations 08H 
and 09H will contain 26H and 01H, and the PC will contain 1234H.

Operation: LCALL
(PC) ¬ (PC) + 3
(SP) ¬ (SP) + 1
((SP)) ¬ (PC7-0)
(SP) ¬ (SP) + 1
((SP)) ¬ (PC15-8)
(PC) ¬ addr15-0   

Bytes: 3

Cycles: 2

Encoding: 0  0  0  1 0  0  1  0 addr15 . . addr8 addr7 . . addr0
Semiconductor Group 4-44 1998-04-01



Instruction Set
C500 Family
LJMP addr16

Function: Long jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high-
order and low-order bytes of the PC (respectively) with the second and third 
instruction bytes. The destination may therefore be anywhere in the full 64K 
program memory address space. No flags are affected.

Example: The label ÒJMPADRÓ is assigned to the instruction at program memory location 
1234H. The instruction

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Operation: LJMP
(PC) ¬ addr15-0  

Bytes: 3

Cycles: 2

Encoding: 0  0  0  0 0  0  1  0 addr15 . . . addr8 addr7 . . . addr0
Semiconductor Group 4-45 1998-04-01



Instruction Set
C500 Family
MOV <dest-byte>, <src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location 
specified by the first operand. The source byte is not affected. No other register or 
flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and 
destination addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The 
data present at input port 1 is 11001010B (0CAH).

MOV R0, #30H ; R0 < = 30H
MOV A, @R0 ; A < = 40H
MOV R1,A ; R1 < = 40H
MOV B, @R1 ; B < = 10H
MOV @R1,P1 ; RAM (40H) < = 0CAH
MOV P2,P1 ; P2 < = 0CAH

leaves the value 30H in register 0, 40H in both the accumulator and register 1, 10H 
in register B, and 0CAH (11001010B) both in RAM location 40H and output on 
port 2.

MOV A,Rn

Operation: MOV
(A) ¬ (Rn)   

Bytes: 1

Cycles: 1

MOV A,direct *)

Operation: MOV
(A) ¬ (direct)    

Bytes: 2

Cycles: 1

*) MOV A,ACC is not a valid instruction. The content of the accumulator after the execution of this
instruction is undefined.

Encoding: 1  1  1  0 1  r  r  r

Encoding: 1  1  1  0 0  1  0  1 direct address
Semiconductor Group 4-46 1998-04-01



Instruction Set
C500 Family
MOV A,@Ri

Operation: MOV
(A) ¬ ((Ri))   

Bytes: 1

Cycles: 1

MOV A, #data

Operation: MOV
(A) ¬ #data    

Bytes: 2

Cycles: 1

MOV Rn,A

Operation: MOV
(Rn) ¬ (A)  

Bytes: 1

Cycles: 1

MOV Rn,direct

Operation: MOV
(Rn) ¬ (direct)    

Bytes: 2

Cycles: 2

Encoding: 1  1  1  0 0  1  1  i

Encoding: 0  1  1  1 0  1  0  0 immediate data

Encoding: 1  1  1  1 1  r  r  r

Encoding: 1  0  1  0 1  r  r  r direct address
Semiconductor Group 4-47 1998-04-01



Instruction Set
C500 Family
MOV Rn, #data

Operation: MOV
(Rn) ¬ #data    

Bytes: 2

Cycles: 1

MOV direct,A

Operation: MOV
(direct) ¬ (A)   

Bytes: 2

Cycles: 1

MOV direct,Rn

Operation: MOV
(direct) ¬ (Rn)  

Bytes: 2

Cycles: 2

MOV direct,direct

Operation: MOV
(direct) ¬ (direct)    

Bytes: 3

Cycles: 2

Encoding: 0  1  1  1 1  r  r  r immediate data

Encoding: 1  1  1  1 0  1  0  1 direct address

Encoding: 1  0  0  0 1  r  r  r direct address

Encoding: 1  0  0  0 0  1  0  1 dir.addr. (src) dir.addr. (dest)
Semiconductor Group 4-48 1998-04-01



Instruction Set
C500 Family
MOV direct, @ Ri

Operation: MOV
(direct) ¬ ((Ri))    

Bytes: 2

Cycles: 2

MOV direct, #data

Operation: MOV
(direct) ¬ #data    

Bytes: 3

Cycles: 2

MOV @ Ri,A

Operation: MOV
((Ri)) ¬ (A)   

Bytes: 1

Cycles: 1

MOV @ Ri,direct

Ooeration: MOV
((Ri)) ¬ (direct)    

Bytes: 2

Cycles: 2

Encoding: 1  0  0  0 0  1  1  i direct address

Encoding: 0  1  1  1 0  1  0  1 direct address immediate data

Encoding: 1  1  1  1 0  1  1  i

Encoding: 1  0  1  0 0  1  1  i direct address
Semiconductor Group 4-49 1998-04-01



Instruction Set
C500 Family
MOV @ Ri,#data

Operation: MOV
((Ri)) ¬ #data   

Bytes: 2

Cycles: 1

Encoding: 0  1  1  1 0  1  1  i immediate data
Semiconductor Group 4-50 1998-04-01



Instruction Set
C500 Family
MOV <dest-bit>, <src-bit>

Function: Move bit data

Description: The Boolean variable indicated by the second operand is copied into the location 
specified by the first operand. One of the operands must be the carry flag; the other 
may be any directly addressable bit. No other register or flag is affected.

Example: The carry flag is originally set. The data present at input port 3 is 11000101B. The 
data previously written to output port 1 is 35H (00110101B).

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (00111001B).

MOV C,bit

Operation: MOV
(C) ¬ (bit)  

Bytes: 2

Cycles: 1

MOV bit,C

Operation: MOV
(bit) ¬ (C)    

Bytes: 2

Cycles: 2

Encoding: 1  0  1  0 0  0  1  0 bit address

Encoding: 1  0  0  1 0  0  1  0 bit address
Semiconductor Group 4-51 1998-04-01



Instruction Set
C500 Family
MOV DPTR, #data16

Function: Load data pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit constant is 
loaded into the second and third bytes of the instruction. The second byte (DPH) is 
the high-order byte, while the third byte (DPL) holds the low-order byte. No flags are 
affected.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction

MOV DPTR, #1234H

will load the value 1234H into the data pointer: DPH will hold 12H and DPL will hold 
34H.

Operation: MOV
(DPTR) ¬ #data15-0
DPH  DPL ¬ #data15-8  #data7-0  

Bytes: 3

Cycles: 2

Encoding: 1  0  0  1 0  0  0  0 immed. data 15 . . . 8 immed. data 7 . . . 0
Semiconductor Group 4-52 1998-04-01



Instruction Set
C500 Family
MOVC A, @A + <base-reg>

Function: Move code byte

Description: The MOVC instructions load the accumulator with a code byte, or constant from 
program memory. The address of the byte fetched is the sum of the original 
unsigned eight-bit accumulator contents and the contents of a sixteen-bit base 
register, which may be either the data pointer or the PC. In the latter case, the PC 
is incremented to the address of the following instruction before being added to the 
accumulator; otherwise the base register is not altered. Sixteen-bit addition is 
performed so a carry-out from the low-order eight bits may propagate through 
higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following instructions will 
translate the value in the accumulator to one of four values defined by the DB 
(define byte) directive.

REL_PC: INC A
MOVC A, @A + PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it will return with 77H 
in the accumulator. The INC A before the MOVC instruction is needed to Òget 
aroundÓ the RET instruction above the table. If several bytes of code separated the 
MOVC from the table, the corresponding number would be added to the 
accumulator instead.

MOVC A, @A + DPTR

Operation: MOVC
(A) ¬ ((A) + (DPTR))  

Bytes: 1

Cycles: 2

Encoding: 1  0  0  1 0  0 1  1
Semiconductor Group 4-53 1998-04-01



Instruction Set
C500 Family
MOVC A, @A + PC

Operation: MOVC
(PC) ¬ (PC) + 1
(A) ¬ ((A) + (PC))   

Bytes: 1

Cycles: 2

Encoding: 1  0  0  0 0  0 1  1
Semiconductor Group 4-54 1998-04-01



Instruction Set
C500 Family
MOVX <dest-byte>, <src-byte>

Function: Move external

Description: The MOVX instructions transfer data between the accumulator and a byte of 
external data memory, hence the ÒXÓ appended to MOV. There are two types of 
instructions, differing in whether they provide an eight bit or sixteen-bit indirect 
address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an 
eight-bit address multiplexed with data on P0. Eight bits are sufficient for external
l/O expansion decoding or a relatively small RAM array. For somewhat larger 
arrays, any output port pins can be used to output higher-order address bits. These 
pins would be controlled by an output instruction preceding the MOVX.

In the second type of MOVX instructions, the data pointer generates a sixteen-bit 
address. P2 outputs the high-order eight address bits (the contents of DPH) while 
P0 multiplexes the low-order eight bits (DPL) with data. The P2 special function 
register retains its previous contents while the P2 output buffers are emining the 
contents of DPH. This form is faster and more efficient when accessing very large 
data arrays (up to 64 Kbyte), since no additional instructions are needed to set up 
the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with 
its high-order address lines driven by P2 can be addressed via the data pointer, or 
with code to output high-order address bits to P2 followed by a MOVX instruction 
using R0 or R1.

Example: An external 256-byte RAM using multiplexed address/data lines is connected to the 
C500 port 0. Port 3 provides control lines for the external RAM. Ports 1 and 2 are 
used for normal l/O. Registers 0 and 1 contain 12H and 34H. Location 34H of the 
external RAM holds the value 56H. The instruction sequence

MOVX A, @R1
MOVX @R0,A

copies the value 56H into both the accumulator and external RAM location 12H.
Semiconductor Group 4-55 1998-04-01



Instruction Set
C500 Family
MOVX A,@Ri

Operation: MOVX
(A) ¬ ((Ri))  

Bytes: 1

Cycles: 2

MOVX A,@DPTR

Operation: MOVX
(A) ¬ ((DPTR))  

Bytes: 1

Cycles: 2

MOVX @Ri,A

Operation: MOVX
((Ri)) ¬ (A)  

Bytes: 1

Cycles: 2

MOVX @DPTR,A

Operation: MOVX
((DPTR))     (A)  

Bytes: 1

Cycles: 2

Encoding: 1  1  1  0 0  0  1  i

Encoding: 1  1  1  0 0  0  0  0

Encoding: 1  1  1  1 0  0  1  i

Encoding: 1  1  1  1 0  0  0  0
Semiconductor Group 4-56 1998-04-01



Instruction Set
C500 Family
MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned eight-bit integers in the accumulator and register 
B. The low-order byte of the sixteen-bit product is left in the accumulator, and the 
high-order byte in B. If the product is greater than 255 (0FFH) the overflow flag is 
set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the accumulator holds the value 80 (50H). Register B holds the value 160 
(0A0H). The instruction

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the 
accumulator is cleared. The overflow flag is set, carry is cleared.

Operation: MUL

(A7-0)     
(B15-8)   

Bytes: 1

Cycles: 4

Encoding: 1  0  1  0 0  1  0  0

¬ (A) x (B)
Semiconductor Group 4-57 1998-04-01



Instruction Set
C500 Family
NOP

Function: No operation

Description: Execution continues at the following instruction. Other than the PC, no registers or 
flags are affected.

Example: It is desired to produce a low-going output pulse on bit 7 of port 2 lasting exactly 
5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so four 
additional cycles must be inserted. This may be done (assuming no interrupts are 
enabled) with the instruction sequence

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

Operation: NOP   

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  0  0  0
Semiconductor Group 4-58 1998-04-01



Instruction Set
C500 Family
ORL <dest-byte>,  <src-byte>

Function: Logical OR for byte variables

Description: ORL performs the bitwise logical OR operation between the indicated variables, 
storing the results in the destination byte. No flags are affected (except P, if 
<dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination 
is the accumulator, the source can use register, direct, register-indirect, or 
immediate addressing; when the destination is a direct address, the source can be 
the accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then 
the instruction

ORL A,R0

will leave the accumulator holding the value 0D7H (11010111B).

When the destination is a directly addressed byte, the instruction can set 
combinations of bits in any RAM location or hardware register. The pattern of bits 
to be set is determined by a mask byte, which may be either a constant data value 
in the instruction or a variable computed in the accumulator at run-time. The 
instruction

ORL P1,#00110010B
will set bits 5, 4, and 1 of output port 1.

ORL A,Rn

Operation: ORL
(A) ¬ (A) Ú (Rn)   

Bytes: 1

Cycles: 1

Encoding: 0  1  0  0 1  r  r  r
Semiconductor Group 4-59 1998-04-01



Instruction Set
C500 Family
ORL A,direct

Operation: ORL
(A) ¬ (A) Ú (direct)   

Bytes: 2

Cycles: 1

ORL A,@Ri

Operation: ORL
(A) ¬ (A) Ú ((Ri))  

Bytes: 1

Cycles: 1

ORL A,#data

Operation: ORL
(A) ¬ (A) Ú #data   

Bytes: 2

Cycles: 1

ORL direct,A

Operation: ORL
(direct) ¬ (direct) Ú (A)  

Bytes: 2

Cycles: 1

Encoding: 0  1  0  0 0  1  0  1 direct address

Encoding: 0  1  0  0 0  1  1  i

Encoding: 0  1  0  0 0  1  0  0 immediate data

Encoding: 0  1  0  0 0  0  1  0 direct address
Semiconductor Group 4-60 1998-04-01



Instruction Set
C500 Family
ORL direct, #data

Operation: ORL
(direct) ¬ (direct) Ú #data  

Bytes: 3

Cycles: 2

Encoding: 0  1  0  0 0  0  1  1 direct address immediate data
Semiconductor Group 4-61 1998-04-01



Instruction Set
C500 Family
ORL C, <src-bit>

Function: Logical OR for bit variables

Description: Set the carry flag if the Boolean value is a logic 1; leave the carry in its current state 
otherwise. A slash (Ó/Ó) preceding the operand in the assembly language indicates 
that the logical complement of the addressed bit is used as the source value, but 
the source bit itself is not affected. No other flags are affected.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, or OV = 0:

MOV C,P1.0 ; Load carry with input pin P1.0
ORL C,ACC.7 ; OR carry with the accumulator bit 7
ORL C,/OV ; OR carry with the inverse of OV

ORL C,bit

Operation: ORL
(C) ¬ (C) Ú (bit)  

Bytes: 2

Cycles: 2

ORL C,/bit

Operation: ORL
(C) ¬ (C) Ú / (bit)  

Bytes: 2

Cycles: 2

Encoding: 0  1  1  1 0  0  1  0 bit address

Encoding: 1  0  1  0 0  0  0  0 bit address
Semiconductor Group 4-62 1998-04-01



Instruction Set
C500 Family
POP direct

Function: Pop from stack

Description: The contents of the internal RAM location addressed by the stack pointer is read, 
and the stack pointer is decremented by one. The value read is the transfer to the 
directly addressed byte indicated. No flags are affected.

Example: The stack pointer originally contains the value 32H, and internal RAM locations 30H 
through 32H contain the values 20H, 23H, and 01H, respectively. The instruction 
sequence

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer set to 0123H. 
At this point the instruction

POP SP

will leave the stack pointer set to 20H. Note that in this special case the stack pointer 
was decremented to 2FH before being loaded with the value popped (20H).

Operation: POP
(direct) ¬ ((SP))
(SP) ¬ (SP) Ð 1  

Bytes: 2

Cycles: 2

Encoding: 1  1  0  1 0  0  0  0 direct address
Semiconductor Group 4-63 1998-04-01



Instruction Set
C500 Family
PUSH direct

Function: Push onto stack

Description: The stack pointer is incremented by one. The contents of the indicated variable is 
then copied into the internal RAM location addressed by the stack pointer. 
Otherwise no flags are affected.

Example: On entering an interrupt routine the stack pointer contains 09H. The data pointer 
holds the value 0123H. The instruction sequence

PUSH DPL
PUSH DPH

will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM 
locations 0AH and 0BH, respectively.

Operation: PUSH
(SP) ¬ (SP) + 1
((SP)) ¬ (direct)   

Bytes: 2

Cycles: 2

Encoding: 1  1  0  0 0  0  0  0 direct address
Semiconductor Group 4-64 1998-04-01



Instruction Set
C500 Family
RET

Function: Return from subroutine

Description: RET pops the high and low-order bytes of the PC successively from the stack, 
decrementing the stack pointer by two. Program execution continues at the 
resulting address, generally the instruction immediately following an ACALL or 
LCALL. No flags are affected.

Example: The stack pointer originally contains the value 0BH. Internal RAM locations 0AH 
and 0BH contain the values 23H and 01H, respectively. The instruction

RET

will leave the stack pointer equal to the value 09H. Program execution will continue 
at location 0123H.

Operation: RET
(PC15-8) ¬ ((SP))
(SP) ¬ (SP) Ð 1
(PC7-0) ¬ ((SP))
(SP) ¬ (SP) Ð 1    

Bytes: 1

Cycles: 2

Encoding: 0  0  1  0 0  0  1  0
Semiconductor Group 4-65 1998-04-01



Instruction Set
C500 Family
RETI

Function: Return from interrupt

Description: RETI pops the high and low-order bytes of the PC successively from the stack, and 
restores the interrupt logic to accept additional interrupts at the same priority level 
as the one just processed. The stack pointer is left decremented by two. No other 
registers are affected; the PSW is not automatically restored to its pre-interrupt 
status. Program execution continues at the resulting address, which is generally the 
instruction immediately after the point at which the interrupt request was detected. 
If a lower or same-level interrupt is pending when the RETI instruction is executed, 
that one instruction will be executed before the pending interrupt is processed.

Example: The stack pointer originally contains the value 0BH. An interrupt was detected 
during the instruction ending at location 0122H. Internal RAM locations 0AH and 
0BH contain the values 23H and 01H, respectively. The instruction

RETI

will leave the stack pointer equal to 09H and return program execution to location 
0123H.

Operation: RETI
(PC15-8) ¬ ((SP))
(SP) ¬ (SP) Ð 1
(PC7-0) ¬ ((SP))
(SP) ¬ (SP) Ð 1  

Bytes: 1

Cycles: 2

Encoding: 0  0  1  1 0  0  1  0
Semiconductor Group 4-66 1998-04-01



Instruction Set
C500 Family
RL A

Function: Rotate accumulator left

Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into 
the bit 0 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RL A

leaves the accumulator holding the value 8BH (10001011B) with the carry 
unaffected.

Operation: RL
(An + 1) ¬ (An) n = 0-6
(A0) ¬ (A7)  

Bytes: 1

Cycles: 1

Encoding: 0  0  1  0 0  0  1  1
Semiconductor Group 4-67 1998-04-01



Instruction Set
C500 Family
RLC A

Function: Rotate accumulator left through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated one bit to 
the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into 
the bit 0 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), and the carry is zero. The 
instruction

RLC A

leaves the accumulator holding the value 8AH (10001010B) with the carry set.

Operation: RLC
(An + 1) ¬ (An) n = 0-6
(A0) ¬ (C)
(C) ¬ (A7)  

Bytes: 1

Cycles: 1

Encoding: 0  0  1  1 0  0  1  1
Semiconductor Group 4-68 1998-04-01



Instruction Set
C500 Family
RR A

Function: Rotate accumulator right

Description: The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into 
the bit 7 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RR A

leaves the accumulator holding the value 0E2H (11100010B) with the carry 
unaffected.

Operation: RR
(An) ¬ (An + 1) n = 0-6
(A7) ¬ (A0)   

Bytes: 1

Cycles: 1

Encoding: 0  0  0  0 0  0  1  1
Semiconductor Group 4-69 1998-04-01



Instruction Set
C500 Family
RRC A

Function: Rotate accumulator right through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated one bit to 
the right. Bit 0 moves into the carry flag; the original value of the carry flag moves 
into the bit 7 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), the carry is zero. The 
instruction

RRC A

leaves the accumulator holding the value 62H (01100010B) with the carry set.

Operation: RRC
(An) ¬ (An + 1) n=0-6
(A7) ¬ (C)
(C) ¬ (A0)  

Bytes: 1

Cycles: 1

Encoding: 0  0  0  1 0  0  1  1
Semiconductor Group 4-70 1998-04-01



Instruction Set
C500 Family
SETB <bit>

Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any 
directiy addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output port 1 has been written with the value 34H 
(00110100B). The instructions

SETB C
SETB P1.0

will leave the carry flag set to 1 and change the data output on port 1 to 35H 
(00110101B).

SETB C

Operation: SETB
(C) ¬ 1   

Bytes: 1

Cycles: 1

SETB bit

Operation: SETB
(bit) ¬ 1  

Bytes: 2

Cycles: 1

Encoding: 1  1  0  1 0  0  1  1

Encoding: 1  1  0  1 0  0  1  0 bit address
Semiconductor Group 4-71 1998-04-01



Instruction Set
C500 Family
SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the address indicated. The branch 
destination is computed by adding the signed displacement in the second 
instruction byte to the PC, after incrementing the PC twice. Therefore, the range of 
destinations allowed is from 128 bytes preceding this instruction to 127 bytes 
following it.

Example: The label ÓRELADRÓ is assigned to an instruction at program memory location 
0123H. The instruction

SJMP RELADR

will assemble into location 0100H. After the instruction is executed, the PC will 
contain the value 0123H.

Note:

Under the above conditions the instruction following SJMP will be at 102H. 
Therefore, the displacement byte of the instruction will be the relative offset (0123H-
0102H) = 21H. In other words, an SJMP with a displacement of 0FEH would be a 
one-instruction infinite loop.

Operation: SJMP
(PC) ¬ (PC) + 2
(PC) ¬ (PC) + rel  

Bytes: 2

Cycles: 2

Encoding: 1  0  0  0 0  0  0  0 rel. address
Semiconductor Group 4-72 1998-04-01



Instruction Set
C500 Family
SUBB A, <src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the 
accumulator, leaving the result in the accumulator. SUBB sets the carry (borrow) 
flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before 
executing a SUBB instruction, this indicates that a borrow was needed for the 
previous step in a multiple precision subtraction, so the carry is subtracted from the 
accumulator along with the source operand). AC is set if a borrow is needed for bit 
3, and cleared otherwise. OV is set if a borrow is needed into bit 6 but not into bit 7, 
or into bit 7 but not bit 6.

When subtracting signed integers OV indicates a negative number produced when 
a negative value is subtracted from a positive value, or a positive result when a 
positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-
indirect, or immediate.

Example: The accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and 
the carry flag is set. The instruction

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC 
cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above 
result is due to the (borrow) flag being set before the operation. If the state of the 
carry is not known before starting a single or multiple-precision subtraction, it should 
be explicitly cleared by a CLR C instruction.

SUBB A,Rn

Operation: SUBB
(A) ¬ (A) Ð (C) Ð (Rn)   

Bytes: 1

Cycles: 1

Encoding: 1  0  0  1 1  r  r  r
Semiconductor Group 4-73 1998-04-01



Instruction Set
C500 Family
SUBB A,direct

Operation: SUBB
(A) ¬ (A) Ð (C) Ð (direct)   

Bytes: 2

Cycles: 1

SUBB A, @ Ri

Operation: SUBB
(A) ¬ (A) Ð (C) Ð ((Ri))   

Bytes: 1

Cycles: 1

SUBB A, #data

Operation: SUBB
(A) ¬ (A) Ð (C) Ð #data   

Bytes: 2

Cycles: 1

Encoding: 1  0  0  1 0  1  0  1 direct address

Encoding: 1  0  0  1 0  1  1  i

Encoding: 1  0  0  1 0  1  0  0 immediate data
Semiconductor Group 4-74 1998-04-01



Instruction Set
C500 Family
SWAP A

Function: Swap nibbles within the accumulator

Description: SWAP A interchanges the low and high-order nibbles (four-bit fields) of the 
accumulator (bits 3-0 and bits 7-4). The operation can also be thought of as a four-
bit rotate instruction. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

SWAP A

leaves the accumulator holding the value 5CH (01011100B).

Operation: SWAP
(A3-0)  (A7-4), (A7-4) ¬ (A3-0)  

Bytes: 1

Cycles: 1

Encoding: 1  1  0  0 0  1  0  0

¬®
Semiconductor Group 4-75 1998-04-01



Instruction Set
C500 Family
XCH A, <byte>

Function: Exchange accumulator with byte variable

Description: XCH loads the accumulator with the contents of the indicated variable, at the same 
time writing the original accumulator contents to the indicated variable. The source/
destination operand can use register, direct, or register-indirect addressing.

Example: R0 contains the address 20H. The accumulator holds the value 3FH (00111111B). 
Internal RAM location 20H holds the value 75H (01110101B). The instruction

XCH A, @R0

will leave RAM location 20H holding the value 3FH (00111111B) and 75H 
(01110101B) in the accumulator.

XCH A,Rn

Operation: XCH
(A)  (Rn)  

Bytes: 1

Cycles: 1

XCH A,direct

Operation: XCH
(A)  (direct)  

Bytes: 2

Cycles: 1

Encoding: 1  1  0  0 1  r  r  r

Encoding: 1  1  0  0 0  1  0  1 direct address

¬®

¬®
Semiconductor Group 4-76 1998-04-01



Instruction Set
C500 Family
XCH A, @ Ri

Operation: XCH
(A)  ((Ri))   

Bytes: 1

Cycles: 1

Encoding: 1  1  0  0 0  1  1  i

¬®
Semiconductor Group 4-77 1998-04-01



Instruction Set
C500 Family
XCHD A,@Ri

Function: Exchange digit

Description: XCHD exchanges the low-order nibble of the accumulator (bits 3-0, generally 
representing a hexadecimal or BCD digit), with that of the internal RAM location 
indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of 
each register are not affected. No flags are affected.

Example: R0 contains the address 20H. The accumulator holds the value 36H (00110110B). 
Internal RAM location 20H holds the value 75H (01110101B). The instruction

XCHD A, @ R0

will leave RAM location 20H holding the value 76H (01110110B) and 35H
(00110101B) in the accumulator.

Operation: XCHD
(A3-0)  ((Ri)3-0)   

Bytes: 1

Cycles: 1

Encoding: 1  1  0  1 0  1  1  i

¬®
Semiconductor Group 4-78 1998-04-01



Instruction Set
C500 Family
XRL <dest-byte>, <src-byte>

Function: Logical Exclusive OR for byte variables

Description: XRL performs the bitwise logical Exclusive OR operation between the indicated 
variables, storing the results in the destination. No flags are affected (except P, if 
<dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination 
is the accumulator, the source can use register, direct, register-indirect, or 
immediate addressing; when the destination is a direct address, the source can be 
accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH 
(10101010B) then the instruction

XRL A,R0

will leave the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement 
combinations of bits in any RAM location or hardware register. The pattern of bits 
to be complemented is then determined by a mask byte, either a constant contained 
in the instruction or a variable computed in the accumulator at run-time. The 
instruction

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output port 1.

XRL A,Rn

Operation: XRL2
(A) ¬ (A)  (Rn)   

Bytes: 1

Cycles: 1

Encoding: 0  1  1  0 1  r  r  r

v

Semiconductor Group 4-79 1998-04-01



Instruction Set
C500 Family
XRL A,direct

Operation: XRL
(A) ¬ (A)  (direct)   

Bytes: 2

Cycles: 1

XRL A, @ Ri

Operation: XRL
(A) ¬ (A)  ((Ri))   

Bytes: 1

Cycles: 1

XRL A, #data

Operation: XRL
(A) ¬ (A)  #data   

Bytes: 2

Cycles: 1

XRL direct,A

Operation: XRL
(direct) ¬ (direct)  (A)    

Bytes: 2

Cycles: 1

Encoding: 0  1  1  0 0  1  0  1 direct address

Encoding: 0  1  1  0 0  1  1  i

Encoding: 0  1  1  0 0  1  0  0 immediate data

Encoding: 0  1  1  0 0  0  1  0 direct address

v

v

v

v

Semiconductor Group 4-80 1998-04-01



Instruction Set
C500 Family
XRL direct, #data

Operation: XRL
(direct) ¬ (direct)  #data   

Bytes: 3

Cycles: 2

Encoding: 0  1  1  0 0  0  1  1 direct address immediate data

v

Semiconductor Group 4-81 1998-04-01



Instruction Set
C500 Family
4.4 Instruction Set Summary Tables

The following two tables give a survey about the instruction set of the C500 family microcontrollers.
In table 4-3 the instructions are ordered in functional groups. In table 4-4 the instructions are
ordered in the hexadecimal order of their opcode.

4.4.1 Functional Groups of Instructions     

Table 4-3 : 
Instruction Set Summary   

Mnemonic Description Byte Cycle

Arithmetic Operations

ADD A,Rn Add register to accumulator 1 1

ADD A,direct Add direct byte to accumulator 2 1

ADD A @Ri Add indirect RAM to accumulator 1 1

ADD A,#data Add immediate data to accumulator 2 1

ADDC A,Rn Add register to accumulator with carry flag 1 1

ADDC A,direct Add direct byte to A with carry flag 2 1

ADDC A,@Ri Add indirect RAM to A with carry flag 1 1

ADDC A, #data Add immediate data to A with carry flag 2 1

SUBB A,Rn Subtract register from A with borrow 1 1

SUBB A,direct Subtract direct byte from A with borrow 2 1

SUBB A,@Ri Subtract indirect RAM from A with borrow 1 1

SUBB A,#data Subtract immediate data from A with borrow 2 1

INC A Increment accumulator 1 1

INC Rn Increment register 1 1

INC direct Increment direct byte 2 1

INC @Ri Increment indirect RAM 1 1

DEC A Decrement accumulator 1 1

DEC Rn Decrement register 1 1

DEC direct Decrement direct byte 2 1

DEC @Ri Decrement indirect RAM 1 1

INC DPTR Increment data pointer 1 2

MUL AB Multiply A and B 1 4

DIV AB Divide A by B 1 4

DA A Decimal adjust accumulator 1 1
Semiconductor Group 4-82 1998-04-01



Instruction Set
C500 Family
Logic Operations

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 1

ANL A,@Ri AND indirect RAM to accumulator 1 1

ANL A,#data AND immediate data to accumulator 2 1

ANL direct,A AND accumulator to direct byte 2 1

ANL direct,#data AND immediate data to direct byte 3 2

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 1

ORL A,@Ri OR indirect RAM to accumulator 1 1

ORL A,#data OR immediate data to accumulator 2 1

ORL direct,A OR accumulator to direct byte 2 1

ORL direct,#data OR immediate data to direct byte 3 2

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A direct Exclusive OR direct byte to accumulator 2 1

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 1

XRL A,#data Exclusive OR immediate data to accumulator 2 1

XRL direct,A Exclusive OR accumulator to direct byte 2 1

XRL direct,#data Exclusive OR immediate data to direct byte 3 2

CLR A Clear accumulator 1 1

CPL A Complement accumulator 1 1

RL A Rotate accumulator left 1 1

RLC A Rotate accumulator left through carry 1 1

RR A Rotate accumulator right 1 1

RRC A Rotate accumulator right through carry 1 1

SWAP A Swap nibbles within the accumulator 1 1

Table 4-3 : 
Instruction Set Summary    (contÕd)

Mnemonic Description Byte Cycle
Semiconductor Group 4-83 1998-04-01



Instruction Set
C500 Family
Data Transfer

MOV A,Rn Move register to accumulator 1 1

MOV A,direct Move direct byte to accumulator 2 1

MOV A,@Ri Move indirect RAM to accumulator 1 1

MOV A,#data Move immediate data to accumulator 2 1

MOV Rn,A Move accumulator to register 1 1

MOV Rn,direct Move direct byte to register 2 2

MOV Rn,#data Move immediate data to register 2 1

MOV direct,A Move accumulator to direct byte 2 1

MOV direct,Rn Move register to direct byte 2 2

MOV direct,direct Move direct byte to direct byte 3 2

MOV direct,@Ri Move indirect RAM to direct byte 2 2

MOV direct,#data Move immediate data to direct byte 3 2

MOV @Ri,A Move accumulator to indirect RAM 1 1

MOV @Ri,direct Move direct byte to indirect RAM 2 2

MOV @Ri, #data Move immediate data to indirect RAM 2 1

MOV DPTR, #data16 Load data pointer with a 16-bit constant 3 2

MOVC A,@A + DPTR Move code byte relative to DPTR to accumulator 1 2

MOVC A,@A + PC Move code byte relative to PC to accumulator 1 2

MOVX A,@Ri Move external RAM (8-bit addr.) to A 1 2

MOVX A,@DPTR Move external RAM (16-bit addr.) to A 1 2

MOVX @Ri,A Move A to external RAM (8-bit addr.) 1 2

MOVX @DPTR,A Move A to external RAM (16-bit addr.) 1 2

PUSH direct Push direct byte onto stack 2 2

POP direct Pop direct byte from stack 2 2

XCH A,Rn Exchange register with accumulator 1 1

XCH A,direct Exchange direct byte with accumulator 2 1

XCH A,@Ri Exchange indirect RAM with accumulator 1 1

XCHD A,@Ri Exchange low-order nibble indir. RAM with A 1 1

1)   MOV A,ACC is not a valid instruction

Table 4-3 : 
Instruction Set Summary    (contÕd)

Mnemonic Description Byte Cycle
Semiconductor Group 4-84 1998-04-01



Instruction Set
C500 Family
Boolean Variable Manipulation

CLR C Clear carry flag 1 1

CLR bit Clear direct bit 2 1

SETB C Set carry flag 1 1

SETB bit Set direct bit 2 1

CPL C Complement carry flag 1 1

CPL bit Complement direct bit 2 1

ANL C,bit AND direct bit to carry flag 2 2

ANL C,/bit AND complement of direct bit to carry 2 2

ORL C,bit OR direct bit to carry flag 2 2

ORL C,/bit OR complement of direct bit to carry 2 2

MOV C,bit Move direct bit to carry flag 2 1

MOV bit,C Move carry flag to direct bit 2 2

Program and Machine Control

ACALL addr11 Absolute subroutine call 2 2

LCALL addr16 Long subroutine call 3 2

RET Return from subroutine 1 2

RETI Return from interrupt 1 2

AJMP addr11 Absolute jump 2 2

LJMP addr16 Long iump 3 2

SJMP rel Short jump (relative addr.) 2 2

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if accumulator is zero 2 2

JNZ rel Jump if accumulator is not zero 2 2

JC rel Jump if carry flag is set 2 2

JNC rel Jump if carry flag is not set 2 2

JB bit,rel Jump if direct bit is set 3 2

JNB bit,rel Jump if direct bit is not set 3 2

JBC bit,rel Jump if direct bit is set and clear bit 3 2

CJNE A,direct,rel Compare direct byte to A and jump if not equal 3 2

Table 4-3 : 
Instruction Set Summary    (contÕd)

Mnemonic Description Byte Cycle
Semiconductor Group 4-85 1998-04-01



Instruction Set
C500 Family
Program and Machine Control  (contÕd)

CJNE A,#data,rel Compare immediate to A and jump if not equal 3 2

CJNE Rn,#data rel Compare immed. to reg. and jump if not equal 3 2

CJNE @Ri,#data,rel Compare immed. to ind. and jump if not equal 3 2

DJNZ Rn,rel Decrement register and jump if not zero 2 2

DJNZ direct,rel Decrement direct byte and jump if not zero 3 2

NOP No operation 1 1

Table 4-3 : 
Instruction Set Summary    (contÕd)

Mnemonic Description Byte Cycle
Semiconductor Group 4-86 1998-04-01



Instruction Set
C500 Family
4.4.2 Hexadecimal Ordered Instructions         

Table 4-4 : 
Instruction List in Hexadecimal Order  

Op-
Code

Mnemonic Op-
Code

Mnemonic Op-
Code

Mnemonic

00H NOP 20H JB bit.rel 40H JC rel

01H AJMP addr11 21H AJMP addr11 41H AJMP addr11

02H LJMP addr16 22H RET 42H ORL direct,A

03H RR A 23H RL A 43H ORL direct,#data

04H INC A 24H ADD A,#data 44H ORL A,#data

05H INC direct 25H ADD A,direct 45H ORL A,direct

06H INC @R0 26H ADD A,@R0 46H ORL A,@R0

07H INC @R1 27H ADD A,@R1 47H ORL A,@R1

08H INC R0 28H ADD A,R0 48H ORL A,R0

09H INC R1 29H ADD A,R1 49H ORL A,R1

0AH INC R2 2AH ADD A,R2 4AH ORL A,R2

0BH INC R3 2BH ADD A,R3 4BH ORL A,R3

0CH INC R4 2CH ADD A,R4 4CH ORL A,R4

0DH INC R5 2DH ADD A,R5 4DH ORL A,R5

0EH INC R6 2EH ADD A,R6 4EH ORL A,R6

0FH INC R7 2FH ADD A,R7 4FH ORL A,R7

10H JBC bit,rel 30H JNB bit.rel 50H JNC rel

11H ACALL addr11 31H ACALL addr11 51H ACALL addr11

12H LCALL addr16 32H RETI 52H ANL direct,A

13H RRC A 33H RLC A 53H ANL direct,#data

14H DEC A 34H ADDC A,#data 54H ANL A,#data

15H DEC direct 35H ADDC A,direct 55H ANL A,direct

16H DEC @R0 36H ADDC A,@R0 56H ANL A,@R0

17H DEC @R1 37H ADDC A,@R1 57H ANL A,@R1

18H DEC R0 38H ADDC A,R0 58H ANL A,R0

19H DEC R1 39H ADDC A,R1 59H ANL A,R1

1AH DEC R2 3AH ADDC A,R2 5AH ANL A,R2

1BH DEC R3 3BH ADDC A,R3 5BH ANL A,R3

1CH DEC R4 3CH ADDC A,R4 5CH ANL A,R4

1DH DEC R5 3DH ADDC A,R5 5DH ANL A,R5

1EH DEC R6 3EH ADDC A,R6 5EH ANL A,R6

1FH DEC R7 3FH ADDC A,R7 5FH ANL A,R7
Semiconductor Group 4-87 1998-04-01



Instruction Set
C500 Family
60H JZ rel 80H SJMP rel A0H ORL C,/bit

61H AJMP addr11 81H AJMP addr11 A1H AJMP addr11

62H XRL direct,A 82H ANL C,bit A2H MOV C,bit

63H XRL direct,#data 83H MOVC A,@A+PC A3H INC DPTR

64H XRL A,#data 84H DIV AB A4H MUL AB

65H XRL A,direct 85H MOV direct,direct A5H -

66H XRL A,@R0 86H MOV direct,@R0 A6H MOV @R0,direct

67H XRL A,@R1 87H MOV direct,@R1 A7H MOV @R1,direct

68H XRL A,R0 88H MOV direct,R0 A8H MOV R0,direct

69H XRL A,R1 89H MOV direct,R1 A9H MOV R1,direct

6AH XRL A,R2 8AH MOV direct,R2 AAH MOV R2,direct

6BH XRL A,R3 8BH MOV direct,R3 ABH MOV R3,direct

6CH XRL A,R4 8CH MOV direct,R4 ACH MOV R4,direct

6DH XRL A,R5 8DH MOV direct,R5 ADH MOV R5,direct

6EH XRL A,R6 8EH MOV direct,R6 AEH MOV R6,direct

6FH XRL A,R7 8FH MOV direct,R7 AFH MOV R7,direct

70H JNZ rel 90H MOV DPTR,#data16 B0H ANL C,/bit

71H ACALL addr11 91H ACALL addr11 B1H ACALL addr11

72H ORL C,direct 92H MOV bit,C B2H CPL bit

73H JMP @A+DPTR 93H MOVC A,@A+DPTR B3H CPL C

74H MOV A,#data 94H SUBB A,#data B4H CJNE A,#data,rel

75H MOV direct,#data 95H SUBB A,direct B5H CJNE A,direct,rel

76H MOV @R0,#data 96H SUBB A,@R0 B6H CJNE @R0,#data,rel

77H MOV @R1,#data 97H SUBB A,@R1 B7H CJNE @R1,#data,rel

78H MOV R0.#data 98H SUBB A,R0 B8H CJNE R0,#data,rel

79H MOV R1.#data 99H SUBB A,R1 B9H CJNE R1,#data,rel

7AH MOV R2.#data 9AH SUBB A,R2 BAH CJNE R2,#data,rel

7BH MOV R3.#data 9BH SUBB A,R3 BBH CJNE R3,#data,rel

7CH MOV R4.#data 9CH SUBB A,R4 BCH CJNE R4,#data,rel

7DH MOV R5.#data 9DH SUBB A,R5 BDH CJNE R5,#data,rel

7EH MOV R6.#data 9EH SUBB A,R6 BEH CJNE R6,#data,rel

7FH MOV R7.#data 9FH SUBB A,R7 BFH CJNE R7,#data,rel

Table 4-4 : 
Instruction List in Hexadecimal Order   (contÕd)

Op-
Code

Mnemonic Op-
Code

Mnemonic Op-
Code

Mnemonic
Semiconductor Group 4-88 1998-04-01



Instruction Set
C500 Family
C0H PUSH direct E0H MOVX A,@DPTR

C1H AJMP addr11 E1H AJMP addr11

C2H CLR bit E2H MOVX A,@R0

C3H CLR C E3H MOVX A,@R1

C4H SWAP A E4H CLR A

C5H XCH A,direct E5H MOV A,direct

C6H XCH A,@R0 E6H MOV A,@R0

C7H XCH A,@R1 E7H MOV A,@R1

C8H XCH A,R0 E8H MOV A,R0

C9H XCH A,R1 E9H MOV A,R1

CAH XCH A,R2 EAH MOV A,R2

CBH XCH A,R3 EBH MOV A,R3

CCH XCH A,R4 ECH MOV A,R4

CDH XCH A,R5 EDH MOV A,R5

CEH XCH A,R6 EEH MOV A,R6

CFH XCH A,R7 EFH MOV A,R7

D0H POP direct F0H MOVX @DPTR,A

D1H ACALL addr11 F1H ACALL addr11

D2H SETB bit F2H MOVX @R0,A

D3H SETB C F3H MOVX @R1,A

D4H DA A F4H CPL A

D5H DJNZ direct,rel F5H MOV direct,A

D6H XCHD A,@R0 F6H MOV @R0,A

D7H XCHD A,@R1 F7H MOV @R1,A

D8H DJNZ R0,rel F8H MOV R0,A

D9H DJNZ R1,rel F9H MOV R1,A

DAH DJNZ R2,rel FAH MOV R2,A

DBH DJNZ R3,rel FBH MOV R3,A

DCH DJNZ R4,rel FCH MOV R4,A

DDH DJNZ R5,rel FDH MOV R5,A

DEH DJNZ R6,rel FEH MOV R6,A

DFH DJNZ R7,rel FFH MOV R7,A

Table 4-4 : 
Instruction List in Hexadecimal Order   (contÕd)

Op-
Code

Mnemonic Op-
Code

Mnemonic Op-
Code

Mnemonic
Semiconductor Group 4-89 1998-04-01



Package Information
C500 Family
5 Package Information

This chapter shows typical package outlines of the packages which are actually used for the
microcontrollers of the C500 family. The appropriate data sheet should always be regarded when
the package of a specific C500 microcontroller has to be referenced.

5.1 P-DIP Package

Figure 5-1 
P-DIP-40-3 Package Outlines

P-DIP-40-3
(Plastic Dual In-line Package)

Dimensions in mmSMD = Surface Mounted Device

GPD05883
Semiconductor Group 5-1 1998-04-01



Package Information
C500 Family
5.2 PLCC Packages

Figure 5-2 
P-LCC-44-2 Package Outlines

P-LCC-44-2 (SMD)
(Plastic Leaded Chip Carrier Package)

Dimensions in mmSMD = Surface Mounted Device

GPL05102
Semiconductor Group 5-2 1998-04-01



Package Information
C500 Family
     
Figure 5-3 
P-LCC-68-4 Package Outline

GPL05099

0.81 max1.27

0.43 ±0.1
0.18 M 68xDA-B

20.32
0.1

5.
08

 m
ax

3.
5 

±0
.2

0.
5 

m
in

0.
2

1.2 x 45°

23.3 ±0.3

24.21 ±0.07

25.28 -0.26

1)
0.38 M DA-B 34x

A B

D

1680.5 x 45°
3 x 24.21 ±0.07 1)

25.28 -0.26

1.1 x 45° Index Marking

1) Does not include plastic or metal protrusions of 0.15 max per side

Dimensions in mmSMD = Surface Mounted Device

GPL5099

P-LCC-68-4 (SMD)
(Plastic Leaded Chip Carrier Package)
Semiconductor Group 5-3 1998-04-01



Package Information
C500 Family
     
Figure 5-4 
P-LCC-84-2 Package Outline

Dimensions in mmSMD = Surface Mounted Device

P-LCC-84-2 (SMD)
(Plastic Leaded Chip Carrier Package)

GPM05620
Semiconductor Group 5-4 1998-04-01



Package Information
C500 Family
5.3 MQFP Packages
   

Figure 5-5 
P-MQFP-44-2 Package Outline

P-MQFP-44-2 (SMD)
(Plastic Metric Quad Flat Package)

Dimensions in mmSMD = Surface Mounted Device

GPM05622
Semiconductor Group 5-5 1998-04-01



Package Information
C500 Family
      
Figure 5-6 
P-MQFP-80-1 Package Outline

P-MQFP-80-1 (SMD)
(Plastic Metric Quad Flat Package)

Dimensions in mmSMD = Surface Mounted Device

GPM05249

 
 

0.65
0.3

12.35
0.1

2 2.
45

 m
ax

1
80

Index Marking

17.2

14

0.
25

 m
in

+0
.1

0.88

1)

0.6x45°

1) Does not include plastic or metal protrusions of 0.25 max per side

A-B0.2 HD 4x
A-B0.2 D 80x

A B

D

C0.12 80xDA-BM

C

1)
14 17

.2
-0

.0
5

H

7°
m

ax-0
.0

2
+0

.0
8

0.
15

±0.08
Semiconductor Group 5-6 1998-04-01



Package Information
C500 Family
      
Figure 5-7 
P-MQFP-100-2 Package Outline

P-MQFP-100-2 (SMD)
(Plastic Metric Quad Flat Package, rectangular)

Dimensions in mmSMD = Surface Mounted Device

GPM05623
Semiconductor Group 5-7 1998-04-01


	1 Fundamental Structure
	1.1 Introduction
	1.2 Memory Organization
	1.2.1 Program Memory
	1.2.2 Data Memory
	1.2.2.1 Internal Data Memory
	1.2.2.2 Internal Data Memory XRAM
	1.2.2.3 External Data Memory

	1.2.3 Special Function Register Area


	2 CPU Architecture
	2.1 Accumulator
	2.2 B Register
	2.3 Program Status Word
	2.4 Stack Pointer
	2.5 Data Pointer
	2.5.1 The Importance of Additional Datapointers
	2.5.2 How the eight Datapointers of the C500 are r...
	2.5.3 Advantages of Multiple Datapointers
	2.5.4 Application Example and Performance Analysis...

	2.6 Enhanced Hooks Emulation Concept
	2.7 Basic Interrupt Handling
	2.8 Interrupt Response Time

	3 CPU Timing
	3.1 Basic Timing
	3.2 Accessing External Memory
	3.2.1 Accessing External Program Memory
	3.2.2 Accessing External Data Memory


	4 Instruction Set
	4.1 Addressing Modes
	4.2 Introduction to the Instruction Set
	4.2.1 Data Transfer Instructions
	4.2.2 Arithmetic Instructions
	4.2.3 Logic Instructions
	4.2.4 Control Transfer Instructions

	4.3 Instruction Definitions
	4.4 Instruction Set Summary Tables
	4.4.1 Functional Groups of Instructions
	4.4.2 Hexadecimal Ordered Instructions


	5 Package Information
	5.1 P-DIP Package
	5.2 PLCC Packages
	5.3 MQFP Packages


