
RMB166-FLI
USERS GUIDE

Version 1.01

OCTOBER 1996

RIGEL CORPORATION
PO Box 90040

Gainesville, Florida 32607
(352) 373-4629

FAX (352) 373-1786
http://www.Rigelcorp.com

(C) 1996 by Rigel Corporation.

Legal Notice:
All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Rigel Corporation.

The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its compatibles.
IBM PC is a trademark of International Business Machines, Inc. MS Windows is a trademark of Microsoft,
Inc.

Information in this document is provided solely to enable use of Rigel products. Rigel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Rigel products except as
provide in Rigel’s Customer Agreement for such products.

Rigel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Rigel retains the right to make changes to these specifications at any time without notice.

Contact Rigel Corporation or your Distributor to obtain the latest specifications before placing your order.

Our Policy:
We attempt to up date all software, software manuals, and hardware manuals every 3-6 months. If there
is a problem with the software or documentation it is corrected immediately. The newest version is then
put on our home page (http://www.rigelcorp.com) with the date noted. Documentation is coded with
version number, and a date. The version number is the version of the board (V1.0), and the date
(September 1996) refers to the last date the document was written.

We welcome any and all comments about our products.

WARRANTY
RIGEL CORPORATION- CUSTOMER AGREEMENT
1. Return Policy. This return policy applies only if you purchased the RMB-16x board directly
from Rigel Corporation. If you are not satisfied with the items purchased, prior to usage, you may return
them to Rigel Corporation within thirty (30) days of your receipt of same and receive a full refund from
Rigel Corporation. You will be responsible for shipping costs. Please call (352) 373-4629 prior to
shipping. A refund will not be given if the READS package has been opened.

2. Limited Warranty. Rigel Corporation warrants, for a period of sixty (60) days from your receipt, that
READS disk(s), hardware assembled boards and hardware unassembled components shall be free of
substantial errors or defects in material and workmanship which will materially interfere with the proper
operation of the items purchased. If you believe such an error or defect exists, please call Rigel
Corporation at (352) 373-4629 to see whether such error or defect may be corrected, prior to returning
items to Rigel Corporation. Rigel Corporation will repair or replace, at its sole discretion, any defective
items, at no cost to you, and the foregoing shall constitute your sole and exclusive remedy in the event of
any defects in material or workmanship.

THE LIMITED WARRANTIES SET FORTH HEREIN ARE IN LIEU OF ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

YOU ASSUME ALL RISKS AND LIABILITY FROM OPERATION OF ITEMS PURCHASED AND
RIGEL CORPORATION SHALL IN NO EVENT BE LIABLE FOR DAMAGES CAUSED BY USE OR
PERFORMANCE, FOR LOSS PROFITS, PERSONAL INJURY OR FOR ANY OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES. RIGEL CORPORATION’S LIABILITY SHALL NOT EXCEED THE COST
OF REPAIR OR REPLACEMENT OF DEFECTIVE ITEMS.

IF THE FOREGOING LIMITATIONS ON LIABILITY ARE UNACCEPTABLE TO YOU, YOU
SHOULD RETURN ALL ITEMS PURCHASED TO YOUR SUPPLIER.

3. READS 166 (referred to as simply READS) License. The READS being purchased is hereby licensed
to you on a non-exclusive basis for use in only one computer system and shall remain the property of
Rigel Corporation for purposes of utilization and resale. You acknowledge you may not duplicate the
READS for use in additional computers, nor may you modify, disassemble, translate, sub-license, rent or
transfer electronically READS from one computer to another, or make it available through a timesharing
service or network of computers. Rigel Corporation maintains all proprietary rights in and to READS for
purposes of sale and resale or license and re-license.

BY BREAKING THE SEAL AND OTHERWISE OPENING THE READS PACKAGE, YOU
INDICATE YOUR ACCEPTANCE OF THIS LICENSE AGREEMENT, AS WELL AS ALL OTHER
PROVISIONS CONTAINED HEREIN.

4. Board Kit. If you are purchasing a board kit, you are assumed to have the skill and knowledge
necessary to properly assemble same. Please inspect all components and review accompanying
instructions. If instructions are unclear, please return the kit unassembled for a full refund or, if you prefer,
Rigel Corporation will assemble the kit for a fee of $30.00. You shall be responsible for shipping costs.
The foregoing shall apply only where the kit is unassembled. In the event the kit is partially assembled, a
refund will not be available, however, Rigel Corporation can, upon request, complete assembly for a fee
based on an hourly rate of $50.00. Although Rigel Corporation will replace any defective parts, it shall not
be responsible for malfunctions due to errors in assembly. If you encounter problems with assembly,
please call Rigel Corporation at (325) 373-4629 for advice and instruction. In the event a problem cannot
be resolved by telephone, Rigel Corporation will perform repair work, upon request, at the foregoing rate
of $50.00 per hour.

5. Governing Law. This agreement and all rights of the respective parties shall be governed by the laws
of the State of Florida.

Table Of Contents
1. OVERVIEW ...8

1.1 HARDWARE OVERVIEW ..1
1.2 SOFTWARE OVERVIEW ..2

1.2.1 READS166 Evaluation Software ...2
1.2.2 R166FLI Utility Software..3

1.3 PARTS LIST ...3

2. QUICK START TUTORIAL...4

2.1 SYSTEM REQUIREMENTS FOR READS166 AND R166FLI..4
2.2 SOFTWARE INSTALLATION..4

2.2.1 READS166 ..4
2.2.2 R166FLI...4

2.3 START UP..4
2.4 CONFIGURING READS166 AND INITIATING HOST-TO-BOARD COMMUNICATIONS...5
2.5 BOOTSTRAPPING ...5
2.6 VERIFYING THAT THE MONITOR IS LOADED..5
2.7 ASSEMBLING FILES ..5
2.8 DOWNLOADING PROGRAMS..6
2.9 RUNNING A PROGRAM..6
2.10 USING HELP ..7

3. OPERATING NOTES..8

3.1 JP9, POWER ...8
3.2 SERIAL PORTS...9

3.2.1 P1, Host..9
3.2.2 P2, Aux ...9
3.2.3 JP11 ..9
3.2.4 Troubleshooting the Serial Connection ...9

3.3 LEDS..10
3.3.1 D6, Power...10
3.3.2 D2, Reset Out...10
3.3.3 D3, Auxiliary..10
3.3.4 D7, Voltage Pump ..11

3.4 PUSH BUTTONS ...11
3.4.1 Reset (SW1) ...11
3.4.2 NMI (SW3)..11

3.5 SLIDE SWITCH (SW2) ..11

4. JUMPER CONFIGURATIONS..12

4.1 DEFAULT JUMPER SELECTION ..12
4.2 BTLDIS ..12
4.3 CFG0 / CFG1 ..12
4.4 BUSACT / EBC0 / EBC1 / VPP ...12
4.5 SERIAL PORT JUMPERS AND HEADER ...13

4.5.1 JP12 and JP13 ..13
4.5.2 JP11 (S0 / S1) ...13
4.5.3 SI0 and SI1..14

4.6 ANALOG-TO-DIGITAL CONVERTER REFERENCE JUMPERS..14
4.6.1 JP8 (VG and VR)..14
4.6.2 JP1 and JP2 ..14

4.7 JP10, VPPON...14

5. MEMORY BLOCK OPTIONS ...15

5.1 ON-CHIP FLASH MEMORY ..15
5.2 RAM MEMORY OPTIONS..15
5.3 ROM MEMORY OPTIONS ...15

5.4 DEFAULT MEMORY SETTING...16

6. HEADERS ...17

6.1 JP7 - SYSTEM HEADER ...17
6.2 JP8 - INPUT/OUTPUT HEADER ...17

7. GAL EQUATIONS...19

8. BOOTSTRAPPING ...21

9. THE MONITOR PROGRAMS ...25

9.1 THE MINIMAL MONITOR..25
9.2 RMON166 MONITOR ..25

10. R166FLI SOFTWARE UTILITIES ...28

10.1 PROGRAMMING INTERNAL FLASH..28
10.1.1 Select a COMM Port..28
10.1.2 Bootstrapping ..28
10.1.3 Inspect FLASH Status ...29
10.1.4 Inspect FLASH Memory ..29
10.1.5 Clear FLASH Bank ..29
10.1.6 Erase FLASH Bank ...30
10.1.7 Program Word ...30
10.1.8 Program HEX File..30
10.1.9 Running Code From FLASH Upon Reset..31

10.2 PROGRAMMING THE EXTERNAL FLASH ..31

11. READS166 -- EVALUATION VERSION 2.0 ...33

11.1 OVERVIEW ..33
11.1.1 RMON166 - The READS166 Monitor Program..33
11.1.2 Ra66 - The READS166 Assembler ...33
11.1.3 Rc66 - The READS166 C Compiler ..33

11.2 MAIN MENU COMMANDS ..34
11.2.1 Project ...34
11.2.2 Module...34
11.2.3 Compile ...35
11.2.4 Tools..35
11.2.5 Options ..37
11.2.6 Help ...38

11.3 USING THE RA66, READS166 ASSEMBLER..38
11.4 USING THE RC66, READS166 C COMPILER...40

12. BILL OF MATERIALS...42

12.1 PARTS LIST ...42
12.2 PARTS CROSS REFERENCE..43

13. TOP OVERLAY AND CIRCUIT DIAGRAMS..46

1. OVERVIEW
The RMB166-FLI industrial board features the Siemens SAB 88C166 16-
bit high-performance microcontroller in the metric plastic quad-flat pack
package. The microcontroller has 32K on board FLASH memory and is
run with a 16-bit nonmultiplexed data bus and an 18-bit nonmultiplexed
address bus. The board may be configured in several different ways
depending on the reset and ROM options chosen. The default
configuration is the 64K RAM and no ROM mode. In this mode, the
monitor or user program is downloaded to RAM using the SAB 88C166
bootstrap feature. A set of option headers, decoded by a GAL device
make the RMB166-FLI a flexible hardware platform.

The RMB166-FLI is compatible with the RMB-165i, RMB-166, RMB-166i,
RMB-167, RMB-167i and the RMB167-CRI. The board size, the location,
and function of all headers are kept the same. The RMB166-FLI has the
following improvements over the RMB-166 and RMB-166i.

1. Industrial Strength Shielding.
The printed circuit board is a six-layered board with separate VCC
and Ground planes for improved shielding designed to operate in
noisy industrial applications. The RMB166-FLI meets and
exceeds the European Community Electromagnetic and
Electrostatic Compliance requirements.

2. FLASH Memory Capability.
A. 32K on-chip FLASH Memory
B. Sockets U5 and U6 accept 29F010 FLASH chips from AMD.
C. The SAB 88C166 FLASH, and the 29F010 chips may be

programmed in circuit using the R166FLI software which is
supplied with the board.

3. Higher Memory Map Resolution.
The PALCE22V10-type device has access to A13 to A17 in
determining the memory map. The memory map has a resolution of
8 Kilobytes.

1.1 Hardware Overview
• High-performance 16-bit microcontroller, the SAB 88C166

32K on board FLASH memory
Bootstrap loading feature
Runs at 40MHz oscillator frequency with zero wait states, (20MHz

internal system clock)
Internal 10-channel, 10-bit Analog-to-Digital converter
10 bits of Analog / Digital inputs (Port 5)

2

Two 16-bit general-purpose input/output ports (P2 and P3)
Two serial ports
16 channels CAPture and COMpare unit

• Serial ports are driven with a MAX232 and terminate at DB-9s and
a 6-post header

• Accommodates 64K or 256K of SRAM (64K installed)
• Accommodates upto 256K of FLASH ROM (not installed)
• Push buttons for RESET# and NMI#
• GAL-decoded memory map for maximum flexibility
• GAL can be reprogrammed by user or by RIGEL Corporation
• Microcontroller is socketed on the board
• Machine screw sockets under all other IC’s
• Power on LED
• LED to indicate SAB 88C166 FLASH burn in progress
• Power consumption is less than 200mA running at 40MHz
• Flexible and embeddable 4" x 6" six layer industrial board
• Mounting holes in all four corners

1.2 Software Overview
1.2.1 READS166 Evaluation Software
READS166 V2.X runs in the MS-Windows 3.1 environment. READS166
supports the bootstrap loader feature and downloads a minimal monitor
during bootstrapping. The source code and description of the bootstrap
program are included in the documentation. READS166 evaluation
software includes: a monitor program, an assembler, and a C-compiler.

RMON166 - The READS166 monitor program
RMON 166 is downloaded after bootstrapping (or it may be placed into
ROM) and supports basic memory and port functions. RMON166 allows
downloading and running applications programs. The complete source
code for user modifications or upgrades is included on disk.

Ra66 - The READS166 Assembler
Ra66 is an assembler for the C166 family of controllers. It is a multi-pass
absolute assembler which generates HEX code directly from assembly
source code.

The assembler in the demo version of READS166 limits the size of code to
about 2K.

Rc66 - The READS166 C Compiler

3

Rc66 is a C Compiler for the C166 family of processors. It compiles code
for the tiny memory model which fully resides in the first segment of
memory. Rc66 is a designed as a low-cost C compiler which provides a
quick development cycle for simpler applications which do not need more
than 64K of code, or the use of standard C libraries. Rc66 implements a
subset of ANSI C. Rc66 works in conjunction with Ra66: first an assembly
language program is generated from the C source, then a HEX file is
generated.

Currently, structures, unions, enumerated types, and the typedef directive
are not implemented. The C-compiler in the demo version of READS166
limits the size of code to about 2K.

1.2.2 R166FLI Utility Software
R166FLI Utility Software runs in the MS-Windows 3.1 environment.
It supports the bootstrap loader feature and downloads a minimal monitor
during bootstrapping.

R166FLI is a utility program to program the internal FLASH memory of the
SAB 88C166 and the external FLASH memory chips on the RMB166-FLI
board. The RMB166-FLI must be bootstrapped and the special-purpose
monitor program downloaded before any other utility is used. The special-
purpose monitor was developed with Rigel’s integrated development
environment READS166. The R166FLI program should be used only
when you wish to burn the FLASH memory. Use the READS166 for code
development.

1.3 Parts List
Your RMB166-FLI package includes the following:
Hardware

1. RMB166-FLI board with 64K of static RAM.
2. Serial modem cable with adapter

Software
1. RMON166 monitor program with source code.
2. Evaluation version of READS166 for Microsoft Windows.
3. R166FLI Utility Software

Documentation
1. User’s Guide with circuit diagrams
2. Bootstrap file source code.
3. Sample programs.

4

2. QUICK START TUTORIAL

2.1 System Requirements for READS166 and R166FLI
READS166 and R166FLI are designed to work with an IBM PC or
compatible, 386 or better, running MS-Windows 3.1 or later.

READS166 / R166FLI use COM1 to COM4 to talk to the RST166-FLI.
These ports are driven using the default interrupt request lines assigned by
the Windows setup. Make sure that you do not have other peripherals
such as a modem or a serial mouse competing for the same interrupts.
They may cause a conflict when running READS166 / R166FLI. If you are
using a COM port which was used previously for a modem or a serial
mouse, the software drivers for these devices should be removed as well.

2.2 Software Installation
2.2.1 READS166
Place the READS166 diskette in your floppy disk drive and run INSTALL.
INSTALL may be run from a DOS prompt or from the Windows File
Manager. For example if the distribution disk is in drive A:, and you are
installing from DOS type:

A:install

Then enter the drive and directory information as requested.

To install from Windows choose Run from the Program Manager’s File
menu. Type

A:install

in the Command Line text box. Click on OK or press ENTER to begin
installation.
Then enter the drive and directory information as requested.

2.2.2 R166FLI
Please follow the above directions to install the R166FLI Utility Software.

2.3 Start up
1. Connect the RMB166-FLI to a well regulated 5 volt power supply.
2. Connect the RMB166-FLI to the PC host via a serial cable.
3. Check to make sure the bootstrap disable (BTLDIS) and the Bus

Active (BUSACT) jumpers are installed. This is the default
configuration for the RMB166-FLI and the board will be populated
this way from the manufacturer.

5

4. Run the READS166 host driver from MS Windows. You may use
the Windows File Manager to launch READS166. You may also
start READS166 by double clicking on the READS166 icon.

2.4 Configuring READS166 and Initiating Host-to-Board
Communications

1. Select the board and processor type using the Options | Hardware
options menu command. Choose the RMB-166i from the board list
which appears.

2. Open the TTY window using the Tools | TTY menu command.
3. Select the communication port parameters using the TTY | Settings

menu command. You will need to select the COM port you are
using, and the baud rate. The default configuration for the
parameters are as follows: 8 data bits, 9600 baud rate, 1 stop bit
and none for the parity bits.

2.5 Bootstrapping
1. Press the reset button on the board and wait 3 seconds.
2. Select item Tools | TTY to start the TTY window. Then from the

menu in the TTY window select Bootstrap. The board will now
bootstrap.

You may observe the bootstrap progress from the status line of the TTY
window. The green LED is turned on during bootstrapping, after the EINIT
instruction, but before the monitor is downloaded. When bootstrapping is
completed, the READS166 monitor prompt appears in the TTY window.

2.6 Verifying that the Monitor is Loaded
Make sure the TTY window is active, clicking the mouse inside the TTY
window to activate it if necessary. Then type the letter ’H’ (case
insensitive) to verify that the monitor program is responding. The ’H’
command displays the available single-letter commands the monitor will
recognize.

2.7 Assembling Files

6

The demo programs which come with the READS166 software will need to
be assembled before downloading to the board. Select the menu
commands Compile | Assemble file to open the screen showing which
demo programs are available.

Select the file demo05C.ASM and press OK to assembly the file. A
screen will appear which says no errors. Assembling the program
produces a HEX file which will be downloaded to the board.

2.8 Downloading Programs
The example program demo05C.ASM repeatedly sends a message to the
host in an interrupt driven fashion. Select the Download | Download to
RAM menu item from the TTY window. A dialog box will open allowing you
to select the HEX file you wish to download.

Choose the demo program demo05C.HEX from the list of files. Press OK
to download the file. You may view the source code by opening the file as
a document using the READS166 text editor. First select the menu item
Tools | Text Edit to open the edit window. Then from the edit menu
select the File | Open menu command. This will display a list of files which
may be opened, edited, and saved.

2.9 Running a Program

7

1. The program demo05C starts at address 4000h as specified by the
ORG pseudo operation in its source code. In order to run
demo05C, select the TTY window Run menu item. The default
address of 4000 will appear in the address field. Press OK to run
the program. Alternately, after the program is downloaded, when
the monitor prompt appears you may type G4000 to run the
program.

2. Some demo programs run in an endless loop. Press the NMI
button on the board to terminate the program and return to the
monitor. Alternatively, you may press the RESET button. In this
case, however, the bootstrapping operation must be repeated, and
the monitor program reloaded.

2.10 Using Help
You can get more information about READS166 from the help system. To
access the help system select Help | Contents from the main menu.
Once in the Help System, select the topic you are interested in for more
information.

8

3. OPERATING NOTES
The following block diagram of the RMB166-FLI board shows placement of
the LEDs, jumpers, headers, switches, and major ICs. It is not drawn to
scale and does not show all the components on the board. For a complete
top overlay of the board please see Section 13.

JP11 S1 S0

G T R G T R

P2 AUX P1 HOST

U7

U8

VPPON
JP10

PGM

D7

JP3

EBCOPT
U9

U4L1

U
6

R
O

M
 E

V
E

N
U

5 R
O

M
 O

D
D

U1

40MHz

L
T

1301

G
A

L
22V

10

33u
H

SW2

SW3 SW1

NMI RESET

BTLDIS
CFGO
CFG1

VAGND
VAREF

VCC

GND
JP2
JP1

R0

D2

AUX

D3

U2 SAB 88C166

JP13

JP12

U10

JP9PWR

D6 + 5V

JP7
SYSTEM
BUS

JP8
I/O
PORTS

G
N

D

V
C

C

P3 P2

 R
A

M
 O

D
D

 R
A

M
 E

V
E

N

Figure 3.1 Board Layout

The RMB166-FLI needs two connections: to a power supply and to the
serial port of a host via a modem cable.

3.1 JP9, Power
Power is brought to the RMB166-FLI board by a two-position screw-type
terminal block. A well regulated 5V DC (+/- 5%) source is required. The
(+) and (-) terminals are marked on the board.

Note
A +5 volt regulated power supply must be used with the
RMB166-FLI board. Lower voltage will not operate the board.
Higher voltage will irreversibly damage the active components
on the board. An unregulated power supply may cause
unpredictable failure conditions. Always check that the power
supply is plugged into the board correctly. A diode is placed
across the input in reverse. Thus if the power is applied to the

9

RMB166-FLI board in reverse polarity, the diode will short the
power supply attempting to prevent damage to the board.

3.2 Serial Ports
The RMB166-FLI board has two serial ports which may be accessed from
the DB9 female connectors labeled P1 (HOST), P2 (AUX), and from the
header labeled JP11.

3.2.1 P1, Host
P1, HOST is used to connect the board to an IBM compatible PC. Serial
port 0 transmit and receive signals (P3.10 and 3.11) are connected to one
channel of a RS-232 level converter. A minimal serial port is constructed
on the board with just the 3 lines: transmit, receive, and ground,
disregarding all hardware handshake signals. A straight-through modem
cable is used to connect with the PC Host. That is a cable connecting pin
2 of the RMB166-FLI to pin 2 of the host, and similarly pin 3 to pin 3, and
pin 5 to pin 5. This cable and a DB9-DB25 adapter is supplied when the
board is purchased directly from Rigel Corporation.

3.2.2 P2, Aux
Serial port 1 transmit and receive lines (P3.8 and P3.9) are connected to
the DB9 connector P2. The default configuration of the board uses these
lines as general purpose digital input/output ports. To use P3.8 and P3.9
for the second
serial port, jumpers
must be installed
into the headers
labeled JP12 and
JP13. Once the
jumpers are
inserted into the
headers, RS-232
level signals of serial port 1 are available through the DB-9 connector P2,
as well as three of the connectors of JP11.

3.2.3 JP11
JP11 provides access to the serial port signals. JP11 is a 6-pin header,
which carries the same signals as P1 and P2. JP11 is also denoted by S0
/ S1 and its 6 lines by G (Ground), T (Transmit), and R (Receive) on the
RMB166-FLI silk-screen. JP11 is intended for embedded uses of the
RMB166-FLI when P1 and P2 are not populated.

3.2.4 Troubleshooting the Serial Connection

 S1 S0

G T R G T R

P2 AUX P1 HOST
JP9

+ 5V
JP11

PWR

D6

Figure 3.2 Serial Port Connectors

10

If after applying power to the board. you are unable to communicate with it
using the READS166 software, check the following items:

1. Make sure that the PC serial port is available. See section 2.1 for
details.

2. Make sure the cables between the board and the PC, and the power
supply and the board, are making good connections.

3. Make sure you are using a straight through serial cable. Do not use
a null modem cable.

4. Make sure the READS166 software is installed properly, and that
you have selected the correct processor from the menu.

5. Check to make sure that the jumpers for BTLDIS and BUSACT are
inserted.

6. After checking these items press the reset button (SW3) on the
evaluation board, wait a few seconds, and try to run the software
again.

7. Some third party software is designed to be invoked using the NMI or
RESET signals. Pushing the RESET or NMI button on the board
should generate the correct signals to operate the software. Refer
to the third party software for further information.

3.3 LEDs
The RMB166-FLI has four LEDs which provide various information about
the board’s status.

3.3.1 D6, Power
The red LED, D6, when lit, shows power is connected to the board. If this
LED does not light up when power is applied; check for the power at the
wall socket, check to make sure you have a good connection at the
terminal block, make sure that your power supply is a well-regulated 5
volts, and that it is not plugged into the terminal block backwards.

3.3.2 D2, Reset Out
The green LED, D2, marked RO (Reset Out) is connected to a GAL
device. The LED is turned on after system initialization is completed.
More specifically, the LED is turned on when the RSTIN# is high and
RSTOUT# makes a 0-to-1 transition, which normally follows an EINIT
instruction. The LED RO will be off and remain off until the bootstrap
loader successfully completes loading the bootstrap file into RAM.

3.3.3 D3, Auxiliary

11

The yellow LED, D3, is an auxiliary LED, whose state is determined by the
GAL equations. For example the user may program the yellow LED to
indicate the presence of a program in ROM. In the default configuration
the yellow LED is nonfunctional.

3.3.4 D7, Voltage Pump
The fourth LED, D7, next to JP10 is lit when the voltage pump is
generating the 12V output.

3.4 Push Buttons
3.4.1 Reset (SW1)
The reset button is connected to the reset pin of the processor and resets
the board. Before bootstrapping press the reset button and wait 3 seconds
to allow the processor to initialize. The board is then able to carry out the
bootstrap instructions.

3.4.2 NMI (SW3)
The NMI button (non-maskable
interrupt) is connected to the
NMI pin of the processor. When
pressed it generates a non-
maskable interrupt. RMON
places a jump instruction at the
NMI vector (address 8).
Pressing the NMI, while the RMON is present, invokes the monitor
program. This works as long as the monitor program in RAM is not
altered. Pressing the NMI button is usually sufficient to interrupt user’s
program which are downloaded and run under RMON. Application
programs placed in ROM may use a similar scheme to initialize the system
when the NMI button is pressed.

3.5 Slide Switch (SW2)
The slide switch is inactive on the board with the factory GAL installed.
The switch is intended to be used in an application specific manner. The
user may burn the GAL to implement the switch.

SW2

SW3 SW1

NMI RESET
R0

D2

AUX

D3

 Figure 3.3 Switches

12

4. JUMPER CONFIGURATIONS

4.1 Default Jumper Selection
Only two jumpers, across BTLDIS and BUSACT, are needed to use the
RMB166-FLI in the default 64K/256K RAM and no ROM mode. Both these
jumpers will be installed
when shipped from the
factory.

4.2 BTLDIS
This jumper connects the
NMI# input to the bootstrap
circuitry. Removing
BTLDIS physically prevents
the processor from entering the bootstrap mode.

4.3 CFG0 / CFG1
CFG0/ CFG1 are used to select the external FLASH memory mapping.
There are two default memory maps for the external FLASH chips. The
first is, 48K FLASH and the rest RAM. The second is with 32K FLASH and
the rest RAM. By inserting a jumper in CFG1, the first 48K of memory is
fetched from external ROM. This allows for the programming of the
FLASH chips using the R166FLI Utility Software provided with the board.

CFG0 CFG1
Default , No FLASH, all external RAM NO JUMPER NO JUMPER
First 48K external FLASH, rest is external RAM NO JUMPER JUMPER
First 32K external FLASH, rest is external RAM JUMPER JUMPER

Inserting a jumper in both CFG1 and CFG0 selects the first 32K of memory
to be fetched from external ROM. This configuration can be used to mimic
the internal FLASH environment with a ROM-less microcontroller. See
Section 5.3 for more information.

4.4 BUSACT / EBC0 / EBC1 / VPP
The external bus configuration and the internal ROM use are determined at
reset before the end-of-initialization instruction. There are three processor
pins BUSACT#, EBC0 and EBC1, involved in selecting the bus
configuration at reset. These pins are brought to the jumper JP3. JP3 has
four pairs of posts. The first two are connected to BUSACT# and EBC0.
Inserting a jumper into the corresponding position grounds the associated
pin. The EBC1 pin of the microcontroller is connected to VCC by a 10K
pull-up resistor. EBC1 is brought to the bottom two pins of the jumper JP3.
The position of JP3 marked EBC1 is used to connect EBC1 to GND

VPPON

JP
10

PGM

D7

JP3

EBCOPT
U9

U4L1

U
6

R
O

M
 E

V
E

N

SW2

BTLDIS
CFGO
CFG1

BUSACT
 EBC0
 EBC1
 VPP

 Figure 4.1 Default Jumpers

13

(ground or 0 Volts). The bottom position of JP3 marked VPP is used to
connect EBC1 to VPP. The following table is a partial list of the most often
used reset options.

Reset Options

BUSACT# EBC0 EBC1 VPP

INTERNAL MEMORY DISABLED JUMPER NO JUMPER NO JUMPER NO JUMPER

INTERNAL ROM ENABLED NO JUMPER JUMPER JUMPER NO JUMPER

PROGRAM ON-CHIP FLASH JUMPER NO JUMPER NO JUMPER JUMPER

NOTE
Care must be taken not to populate the two positions, EBC1
and VPP at the same time. Populating both EBC1 and VPP
will cause the output of the voltage pump to be grounded.

For more details on the external bus configuration please see the
Siemens SAB 80C166 Data Book.

4.5 Serial Port Jumpers and Header
The serial ports are driven by U10, an RS-232 driver. Serial port 0 transmit
and receive signals (P3.10 and 3.11)
are connected to channel 1 of U10.
Serial port 1 transmit and receive lines
(P3.8 and P3.9) may be used to drive
the second channel of U10 or be used
as general purpose digital input/output
ports. The default configuration of the
board uses these lines as I/O lines.

4.5.1 JP12 and JP13
Jumpers JP12 and JP13 connect serial
port 1 transmit and receive signals to
channel 2 of U10. Once jumpers JP12
and JP13 are inserted into the headers,
RS-232 level signals of serial port 1 are
available through the DB-9 connector
P2, as well as three of the posts of
JP11.

4.5.2 JP11 (S0 / S1)
JP11 provides access to the serial port
signals. JP11 is a 6-pin header, which
carries the same signals as P1 and P2.
JP11 is also denoted by S0 / S1 and its 6 lines by G (Ground), T

V A G N D
V A R EF

V C C

G N D
JP 2
JP 1

JP 13

JP 12

U 10

JP 8 I/O
P O R T S

G
N

D

V
C

C

 9
 8
 7
 6
 5
 4
 3
 2
 1
S I0
S I1
 9
 7
 5
 3
 1

 9
 8
 7
 6
 5
 4
 3
 2
 1
V R
V G
 8
 6
 4
 2
 0

15
14
13
12
11
10

15
14
13
12
11
10

P 3 P 2

 Figure 4.2 Serial Port and
A/D Jumpers

14

(Transmit), and R (Receive) on the RMB166-FLI silk-screen. JP11 is
intended for embedded uses of the RMB166-FLI when P1 and P2 are not
populated.

4.5.3 SI0 and SI1
Pins S1I and S1O on header JP8 are connected to the input and output of
Serial Port 1 after the MAX232 level converter. These signals are identical
to those on JP11. The jumpers JP12 and JP13 must be inserted to use
S1I and S1O as RS232 level signals.

4.6 Analog-to-Digital Converter Reference Jumpers
The analog-to-digital converter requires a ground and reference voltage to
operate.

4.6.1 JP8 (VG and VR)
The reference voltages may be provided either from JP8 lines marked VG
(ground reference voltage) and VR (reference voltage), or connected to the
+5 volt TTL supply.

4.6.2 JP1 and JP2
Jumpers JP1 and JP2 select the source of reference voltages. The center
posts of JP1 and JP2 are connected to the SAB 88C166 VAREF and
VAGND inputs. Post 1 of JP1, marked VCC is connected to the +5 volt
supply. Thus, connecting this post with the center post selects VAREF to
be the same as the +5 volt supply. In the alternate position, VAREF is to
be supplied from JP8 from the terminal marked VR. Similarly, the post
marked GND of JP2 is connected to the ground of the supply. Connecting
the center post of JP2 with the post marked GND selects VAGND to be the
same as the ground of the supply voltage. In the alternate position, the
ground reference is to be supplied from the JP8 terminal marked VG.

4.7 JP10, VPPON
The RMB166-FLI board contains a voltage pump to generate a well-
regulated 12V from the 5 Volt supply. The voltage pump, built around the
LM1301 chip is activated by inserting a jumper at JP10, designated as
VPPON on the board. The LED (D7) next to the jumper is lit when the
voltage pump is generating the 12V output. (Note that the output of the
voltage pump is 5V when the jumper is removed.) Although the voltage
pump should probably be disabled when not programming or erasing the
FLASH memory, leaving it on will not harm the board.

15

5. MEMORY BLOCK OPTIONS
There are three blocks of memory available on the RMB166-FLI board.
There is the on-chip 32K (internal) FLASH block of memory, there is a
RAM block which may hold upto 256K of memory, and there is a ROM
block which may hold up to 256K of (external) FLASH memory.

5.1 On-Chip FLASH Memory
The SAB 88C166 has 32K of on-chip FLASH memory. The RMB166-FLI
board is designed to provide the 12 volts needed to program the FLASH.
The RMB166-FLI is sold with software, the R166 Utility Software,
especially written to program the FLASH. The on-chip FLASH has 4
memory banks of 8K each, which may be programmed separately. Please
refer to the SAB 88C166 data book for details of the FLASH memory. See
Section 10, for directions on how to program the FLASH using the R166FLI
Utility Software.

5.2 RAM Memory Options
The RAM block of memory is designed to take static RAMs, either 32K
62C256-type, or 128K 681000-type static RAM chips. Alternately battery-
backed RAMs may be used in the RAM block. Two chips are needed, one
for EVEN and the other for ODD addresses. These chips are placed in the
32-pin sockets marked U7 and U8. Place 28-pin RAM devices closer to
the 2 X 25 header, away from the processor. Programs may be
downloaded to the RAMs and run, using the READS166 software which
comes with the board. Alternatively you may use third party software to
download and run programs on the board.

The SAB 88C166 may be programmed to insert wait cycles during external
memory access. However, in order to run the SAB 88C166 at its full
potential of 40MHz, the RAMs should be rated at 70 nano seconds or
faster.

5.3 ROM Memory Options
The ROM block of memory accepts industry-standard 29F010 Flash
EEPROMs providing 256K ROM. Two chips are needed, one for EVEN
and the other for ODD addresses. These chips are placed in 32-pin PLCC
sockets marked U5 and U6. The chip enable signals for the ROM are
generated by the 22V10 GAL. A variety of memory maps are achievable
simply by modifying the equations and reprogramming the GAL. The GALs
are programmed with two default memory maps which are activated by
inserting jumpers into CFG0 and CFG1. When CFG1 is populated with a
jumper, the first 48K of memory is fetched from the external ROM. If both
jumpers, CFG0 and CFG1 are inserted, the first 32K of memory is fetched

16

from external ROM. In either case, the remainder of the memory is
mapped into RAM. Thus, with both CFG0 and CFG1 populated, the
memory map is identical to the case of using the evaluation board with the
32K internal FLASH memory. This configuration is useful in simulating the
environment with a ROM-less microcontroller.

The industry-standard external Flash EEPROMs are placed into a write
mode by writing to addresses around 5555h and AAAAh. These write
operations activate an unlock sequence which allows subsequent write
operations. If you wish to program the EEPROMs, the R166FLI Utility
Software may be used. See Section 10 for directions.

The default GALs allow the use of upto 48K of external FLASH. The GALs
can be reprogrammed to implement a very wide variety of memory maps.
Please contact RIGEL Corporation if you have questions about the
possibly memory maps, or if you require assistance in programming the
GALs.

5.4 Default Memory Setting
The default jumper settings assume 64K of RAM with no ROM. In this
configuration, the board is bootstrapped and programs are downloaded
into RAM and then run. Except for the BTLDIS, and the BUSACT jumpers,
no other jumpers are needed.

17

6. HEADERS
The RMB166-FLI board has three headers: the input/output port header
JP8, the system header JP7, and the serial port header JP11. JP7
contains the address, data and control busses. Ports 2, 3, and 5 are
available on JP8. Individual signals of these headers are listed below.
The tables reflect the physical orientation of the headers and the
enumeration of their individual posts. Pin 1 may be identified as the post
with the square pad on the printed circuit board. The headers are also
labeled on the board to make pin identification easier.

The location of these headers and the signals on the headers remain the
same between all of the RMB-16x boards in this series. Any external
board designed to plug into the RMB166-FLI board will be pin-to-pin
compatible with all of the other RMB-16x boards.

6.1 JP7 - System Header
Signal Pins Signal
Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

D0 5 6 A0
D1 7 8 A1
D2 9 10 A2
D3 11 12 A3
D4 13 14 A4
D5 15 16 A5
D6 17 18 A6
D7 19 20 A7
D8 21 22 A8
D9 23 24 A9

D10 25 26 A10
D11 27 28 A11
D12 29 30 A12
D13 31 32 A13
D14 33 34 A14
D15 35 36 A15
RD# 37 38 A16
ALE 39 40 A17

RSTIN# 41 42 WR#
RSTOUT# 43 44 BHE#

NMI# 45 46
47 48
49 50

Note that pins 46-50 are not connected to any signals.
6.2 JP8 - Input/Output Header

18

Signal Pins Signal
Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

P5.0 5 6 P5.1
P5.2 7 8 P5.3
P5.4 9 10 P5.5
P5.6 11 12 P5.7
P5.8 13 14 P5.9

VAGND 15 16 S1I
VAREF 17 18 S1O

P2.0 19 20 P3.0
P2.1 21 22 P3.1
P2.2 23 24 P3.2
P2.3 25 26 P3.3
P2.4 27 28 P3.4
P2.5 29 30 P3.5
P2.6 31 32 P3.6
P2.7 33 34 P3.7
P2.8 35 36 P3.8
P2.9 37 38 P3.9

P2.10 39 40 P3.10
P2.11 41 42 P3.11
P2.12 43 44 P3.12
P2.13 45 46 P3.13
P2.14 47 48 P3.14
P2.15 49 50 P3.15

19

7. GAL EQUATIONS
A PALCE22V10 is used for the board logic.

#TITLE BDC166
#ENGINEER SRH
#COMPANY Rigel Corporation
#REVISION 2
#PROJECT 166-FLI
#COMMENT 10/07/96
#CHIP U4 - PALCE22V10

Settings for CFG0 and CFG1 (0 = no jumper)

Normal 0 | 0 “ No ROM, all external RAM
 |
 |
First 48K ROM 0 | 1 “ First 48K is external ROM,
 | “ rest is external RAM
 |
First 32K ROM 1 | 1 “ First 32K is external ROM,

“ rest is external RAM
 "
 "
 " --------------------- PIN Declarations ----------------------

INPUT A0, A14, A15, A16, A17, BHE_, RSTOUT_, RSTIN_, USERMON,
 ALE, CFG0, CFG1;

OUTPUT RASH_, RASL_, ROSL_, ROSH_, MA16, MA17, PLUG, BTLN, BTLED,
 PLUG_;

 " -------------------- Boolean Equation Segment ---------------

 IF (CFG0 * CFG1) THEN “ No ROM, all RAM

 RASH_ = BHE_;
 RASL_ = A0;
 ROSH_ = 1;
 ROSL_ = 1;
 MA16 = A16;
 MA17 = A17;

 ELSIF (CFG0 * /CFG1) THEN “ First 48K is external
“ ROM, rest is RAM.

 ROSH_ = BHE_ + ((A17 + A16 + A15) * (A17 + A16 + /A15 +
A14));

 ROSL_ = A0 + ((A17 + A16 + A15) * (A17 + A16 + /A15 + A14));

 RASH_ = /(/BHE_ * ROSH_); “ If it is not external
“ ROM, it is external

RAM

20

 RASL_ = /(/A0 * ROSL_); “ If it is not external
“ ROM, it is external

RAM

 MA16 = A16;

 MA17 = A17;

 ELSIF (/CFG0 * /CFG1) THEN “ First 32K is ROM, rest
“ is RAM

 ROSH_ = BHE_ + (A17 + A16 + A15);

 ROSL_ = A0 + (A17 + A16 + A15);

 RASH_ = /(/BHE_ * ROSH_); “ If it is not external
“ ROM, it is external

RAM

 RASL_ = /(/A0 * ROSL_); “ If it is not external
“ ROM, it is external

RAM

 MA16 = A16;

 MA17 = A17;

 END IF;

 “ Remaining equations implement the bootstrap logic

 PLUG = /(RSTIN_ * PLUG_);
 PLUG_ = /(/RSTOUT_ * PLUG);
 BTLN = /ALE * PLUG;
 BTLED = PLUG;

21

8. BOOTSTRAPPING
The SAB 88C166 bootstrap loader is invoked by the following sequence of
signals after a hardware reset:

1. Pull ALE high
2. Activate the non-maskable interrupt by a high to low transition

These two signals are generated by the RMB166-FLI hardware. The ALE
is connected to a 1K pull-up resistor. Upon reset, while the ALE is
sampled, it is read by the microcontroller to be at logic level high. Next, the
microcontroller configures the ALE as an output. The ALE is driven low, to
be pulsed high for address latches. The RMB166-FLI logic detects this
high to low transition (input to output configuration) of ALE and uses this
signal to drive NMI# (non-maskable interrupt) to the logic level low. The
RMB166-FLI logic also inspects the state of RSTIN# and RSTOUT#. The
activation of RSTIN# also triggers the events described above. Some code
is downloaded to the microcontroller during bootstrap. This code contains
an EINIT instruction. The execution of EINIT activates the RSTOUT#
signal. The RMB166-FLI logic uses this signal to disable further bootstrap
load operations. That is, disable the activation of NMI# every time ALE is
low.

The RMB166-FLI logic which performs the bootstrap load operation is
embedded in the GAL equations of U4. (Refer to the GAL equation in
section 7.)

Note that the GAL which controls the bootstrap load operation is also
responsible for turning on the LED. In its default implementation, the LED
is lit once the RSTOUT# signal is activated. For specific applications, the
user may alter the operation of the bootstrap logic by altering the GAL
equations.

Once the bootstrap loader is invoked the serial port S0 is used to
communicate with the SAB 88C166. The host must first send a 0 byte with
8 data bits, 1 stop bit and no parity bits. The SAB 88C166 responds with
the byte 55h (the ASCII character ’U’). Then the host expects 32 bytes of
code to be downloaded to internal RAM starting at address 0FA40h and
run.

Since 32 bytes is not enough to initialize and configure the SAB 88C166
and then download a user program, a secondary loop is used. This loop is
a short piece of code that is placed starting at address 0FA60h, so that

22

when the 32 bytes of primary code are executed, the program continues
with the secondary loop. The approach is described in more detail below.

The 32 bytes downloaded are, in hexadecimal,

E6 F0 60 FA
9A B7 FE 70
A4 00 B2 FE
7E B7
B4 00 B0 FE
86 F0 BB FC
3D F6
CC 00
CC 00
CC 00
CC 00

which correspond to the following short code.

; origin is 0FA40h

mov R0, #0fa60h
W0:

jnb S0RIR, W0
movb [R0], S0RBUF
bclr S0RIR
movb S0TBUF, [R0]
cmpi1 R0, #0fcbb ; read 604 bytes
jmpr cc_NE, W0
nop
nop
nop
nop

Note that the NOP (no operation) operations are required to fill the 32
bytes, since the bootstrap loader remains active until all 32 bytes are
received. When the bootstrap loader receives its last byte and places it in
address 0FA5Fh, it makes a jump to 0FA40h and starts executing the
code. This is the short loop given above. Note that at this time the internal
RAM starting from 0FA60h does not contain any relevant code.

The short loop takes advantage of the serial port S0 which is already
initialized. It waits for a user specified number of bytes, 604 bytes in this
case, and places these bytes consecutively starting from internal RAM
location 0FA60h. When the loop is done (all 604 bytes received) the
program continues, executes the NOP operations and then starts
executing code from 0FA60h on. Thus the 604 bytes loaded by the
secondary loop are also interpreted as code.

23

The user may alter the number of bytes to be loaded by changing the 21st
and 22nd bytes (BB and FC) which give the address (the low byte, followed
by the high byte) of the last byte to be read by the loop. Note that there is
a practical limit to the number of bytes that can be downloaded by this
loop: the PEC source and destination pointers as well as the SFRs which
occupy addresses FDE0h and above must not be overwritten by data
bytes.

Due to the powerful instruction set of the SAB 88C166, a lot of functionality
can be implemented within 604 bytes of code. The 604 bytes contained in
the file BTL.DAT downloads a minimal monitor program. This program
contains an initialization routine, subroutines to send and receive
characters through the serial port, a subroutine to download code in the
Intel Hex format, and a subroutine to jump to any location within the 64K
segment. The latter two are invoked by single-letter commands.

The 604 byte-code may be broken down into four sections.
1. Initialization code to be executed after the 32-byte bootstrap
2. Code to be written starting at address 0 to be executed after the

software reset.
3. The minimal monitor to be placed starting at address 8000h
4. The software reset (SRST) instruction to leave the bootstrap mode.

Sections 1 and 4 are somewhat different than sections 2 and 3. The bytes
downloaded in sections 1 and 4 are actual instructions which are executed
after the 32-byte bootstrap load is completed. Sections 2 and 3 are
instructions to poke bytes into memory. More specifically, in section 2,
bytes are written to memory locations starting from address 0. In section
3, from address 8000h. The bytes placed into memory locations starting
from address 0 is executed after the software reset instruction. This is an
initialization program which, upon completion, branches to address 8000h
to execute the minimal monitor program.

For example, the initialization code starting at address 0 begins with the
two instructions

DISWDT
EINIT

whose machine instructions are

(A5 5A A5 A5) and (B5 4A B5 B5),

24

respectively. The code within the 604-byte download block pokes these
bytes starting from address 0. That is, these instructions are placed into
memory, one word at a time, as data. The following instructions are used.

 mov R1, #0A55Ah ; begin: DISWDT
 mov 0, R1
 mov R1, #0A5A5h
 mov 2, R1

 mov R1, #0B54Ah ; EINIT
 mov 4, R1
 mov R1, #0B5B5h
 mov 6, R1

This pattern is used throughout sections 2 and 3. First the word is written
to register R1. Then the register is copied to memory. The file BTL.DAT
contains the bytes downloaded to the RMB166-FLI board during
bootstrapping. The file BTL.SRC contains the source code.

The initialization routines configure the SYSCON register. The internal
ROM is disabled and the external bus is activated. Next the CSP and DPP
registers are initialized. These steps need to be completed before the
EINIT instruction. Note that if the watchdog timer is to be disabled; this too
must be done before the EINIT instruction. The final step of initialization
consists of configuring port bit 3.13 as an output port. This pin is used as
the WR# signal to put data into external RAM.

25

9. THE MONITOR PROGRAMS

9.1 The Minimal Monitor
The minimal monitor is placed by the bootstrap loader starting at address
8000h. The monitor responds to two single-letter commands ’D’ and ’G’.
The ’D’ command places the monitor in a download mode. Code in the
Intel Hex format is expected. Code may be downloaded anywhere in the
first 64K segment. The ’G’ (Go) command expects 4 hexadecimal
characters. These 4
characters specify an
address within the first 64K
segment. A jump is
performed to this address. If
a user program is
downloaded (using the ’D’
command), say at address
0C000h, then the GC000
command branches to the
user program. In many
cases, the user program is
the application program or a
monitor program, such as
RMON166, and hence, the
minimal monitor is no longer
required. If, however, the
user program wishes to
return to the minimal monitor,
it should branch to address
8000h. Note that the minimal
monitor initializes the stack,
so either a call or a jump to
address 8000h would work
The minimal monitor is a loop that executes the above flowchart.

9.2 RMON166 Monitor
The monitor program RMON166 allows inspecting and modifying the first
64K segment of RMB166-FLI memory, configuring the ports, inputting and
outputting from the general purpose ports, downloading code in the Intel
Hex format, and branching to user code. RMON166 features are invoked
by single-letter commands. RMON166 assumes a 40Mhz system crystal.
Serial port 0 is initialized to run at 9600 Baud with 8 bits of data, 1 stop bit
and no parity bits.

26

RMON166 is intended to be downloaded after bootstrapping the RMB166-
FLI board. RMON166 is placed starting at address 0C000h. The first 256
bytes are reserved for monitor variables. The entry point to RMON166 is
at address C000H or C100h. To set up RMON166, initialize READS166
and the RMB166-FLI board and invoke the Bootstrap command as
explained in the previous section. From the TTY menu, select Download
to download RMON166.HEX. Branch to and execute RMON166 using the
Run command under the TTY menu. Specify address C000H or C100h
since the entry point to RMON166 is at 0C000h. Note that RMON166
places a jump to C000H or C100h at the nonmaskable interrupt vector.
Thus, RMON166 may subsequently be invoked by pressing the NMI
pushbutton on the RMB166-FLI. RMON166 initializes the stack and resets
the interrupts. Thus, even after the NMI button is pressed, RMON166
clears the NMI interrupt by executing a dummy ’return from interrupt’
instruction.

Alternatively, RMON166 may be placed in the ROM memory block and
invoked upon reset. The source code for RMON166 is given on the
distribution disk. RMON166 is not optimized for speed or size, but rather
for clarity and pedagogical value. Legal users are encouraged experiment
with, make modifications to, or use portions of the RMON166 in their
applications.

The single-letter commands of RMON166 are explained below.

D Download HEX file
The D command places RMON166 in a download mode. The monitor
expects to receive code in the Intel Hex format through serial port 0. The
download mode is terminated when the last line of Intel Hex code is
received (when the byte count is 0).

C Port Configuration
The C command is used to configure the ports, i.e., the port direction
registers DPnn. Cn displays the current setting of DPn. Cn=mmmm writes
the word mmmm to register DPn.

G Go
The user code at address xxxx is branched to by the Gxxxx command.
Note that the user program may return to RMON166 by a branching
instruction to address 0C000h. RMON166 initializes the stack, thus, either
a jump or a call instruction may be used to return to RMON166.

H Help
The H command displays a summary of available monitor commands.

27

M Memory
The first 64K segment of the RMB166-FLI memory may be inspected or
modified by the M command. The M command is also useful to poke short
programs into memory.
M XXXX displays the current contents of memory address XXXX.

M XXXX=nn inserts the byte nn into memory address XXXX. When this
command is used, RMON166 displays the current contents as well as the
new contents. The address XXXX is incremented and the current contents
of (XXXX+1) are displayed. Consecutive bytes may be written starting at
XXXX. The process is terminated if a carriage return or an illegal
hexadecimal digit is keyed in.

M XXXX-YYYY displays the block of memory between addresses XXXX
and YYYY.

M XXXX-YYYY=nn fills the memory block XXXX to YYYY with byte nn.

P Port Data
The P command is used to read from or write to the ports. Pn displays the
current value of port n. If port n is an input port, then the value read is the
current voltage levels applied to the ports. If port n is an output port, Pn
returns the current output value to port n. Pn=mmmm sets the current
value of output port n to mm.

Note that individual bits of the ports may be programmed as input or
output. Thus, the word returned by Pn gives the external voltage levels
applied to the input bits and the current values of the output bits.

W Word Memory
This command is identical to the M command, except that the memory
contents are displayed and modified as words (2 bytes). Words start at
even address.

28

10. R166FLI SOFTWARE UTILITIES
R166FLI is a utility program to program the on-chip FLASH memory and
the FLASH memory devices on the RMB166-FLI board. The RMB166-FLI
must be bootstrapped and the special-purpose monitor program be
downloaded before any other utility is used. The special-purpose monitor
was developed with Rigel’s integrated development environment
READS166. Many of the functions of the special-purpose monitor are
accessible by single-letter commands. Press ’H’ for a list of single-letter
commands the monitor recognizes.

10.1 Programming Internal Flash
Below are step-by-step instructions for using the R166FLI to clear, erase,
and program individual words or to download a HEX file into the internal
FLASH memory.

10.1.1 Select a COMM Port
Use the TTY | Use Comm 1 or the TTY | Use Comm 2 commands to
select a communications port. The window title reports the current state of
the communications port. The following screen appears showing which
comm port was selected.

10.1.2 Bootstrapping
Only the two jumpers BTLDIS and BUSACT should be present while
bootstrapping and loading the monitor program. Leave these jumpers in
place while CLEARing, PROGRAMming, and ERASEing the FLASH
memory. Remove the two jumpers, BTLDIS AND BUSACT, to run code
from the FLASH memory upon RESET. Use the "TTY | Bootstrap and
load monitor" command to bootstrap the board. After bootstrapping, the
special-purpose monitor program R166FLI.HEX is downloaded to the
RMB-166 FLI board. You may verify that the board is responding by

29

pressing the enter key and observing the monitor prompt "10F166 >". You
may also type '“H” for a brief help screen displayed by the monitor.

10.1.3 Inspect FLASH Status
Use the menu command "FLASH | Status" or equivalently, the single-letter
command 'S' to review the current status of the four FLASH banks. Each
bank is reported to be in one of three states:

is CLEARED - all words are 0000
is ERASED - all words are FFFF
has DATA - data words are programmed into the FLASH bank

10.1.4 Inspect FLASH Memory
Use the "FLASH | Memory dump" menu command to inspect a block of
256 bytes of FLASH memory. Input the block address high byte in the
dialog. You may equivalently use the single-letter command 'M' followed
by the address high byte as two hexadecimal digits. For example, "M04"
displays the block of memory [0400..04FF].

10.1.5 Clear FLASH Bank
Clearing a bank means all words in
that bank to 0000. The voltage
pump must be turned on by
inserting a jumper in JP10,
VPPON, and inserting a jumper in
VPP on jumper block JP3. The
jumpers BUSACT and BTLDIS
should remain in place. The LED
D7 will light up when the voltage
pump is turned on.

VPPON
JP10

PGM

D7

JP3

EBCOPT
U9

U4L1

L
T

1301

G
A

L
22V

10

33u
H

SW2

BTLDIS
CFGO
CFG1

BUSACT
EBC0
EBC1
VPP

10.1 Jumper Settings For Clearing,
Programming and Erasing FLASH

30

Use the "FLASH | Clear | Bank_n" menu command to clear any one of the
four FLASH banks. The following screen appears allowing you to choose
which bank to clear.

10.1.6 Erase FLASH Bank
Erasing a bank means programming all words in that bank to FFFF. The
voltage pump must be turned on by inserting a jumper in JP10, VPPON,
and inserting a jumper in VPP on jumper block JP3. Inserting a jumper in
VPP connects EBC1 to VPP. The jumpers BUSACT and BTLDIS should
remain in place. The LED D7 will light up when the voltage pump is turned
on. Use the "FLASH | Erase | Bank_n" menu command to erase any one
of the four FLASH banks.

 Note
You must first clear the bank before you erase the bank. The READS166
demo software will force you to do this.

10.1.7 Program Word
The voltage pump must be turned on by inserting a jumper in JP10,
VPPON, and inserting a jumper in VPP on jumper block JP3. The jumpers
BUSACT and BTLDIS should remain in place. The LED D7 will light up
when the voltage pump is turned on. Use the "FLASH | Program word"
menu command to program a single FLASH word. Input the address and
data in hexadecimal in the dialog box.

You may equivalently use the single-letter command ’B’ followed by the
address and word, both as 4-digit hexadecimal numbers. For example,
"B00001234" burns the data word 1234 (hex) into the FLASH address
0000.

10.1.8 Program HEX File
The voltage pump must be turned on by inserting a jumper in JP10,
VPPON, and inserting a jumper in VPP on jumper block JP3. The jumpers

31

BUSACT and BTLDIS should remain in place. The LED D7 will light up
when the voltage pump is turned on. Use the "FLASH | Program HEX
file" menu command to download a file into FLASH memory. When this
menu item is selected the following screen appears. Input the file name of
the HEX file in the dialog box, and press OK to program the file to FLASH.

10.1.9 Running Code From FLASH Upon Reset
Once an executable program is downloaded into FLASH memory, it may
be invoked upon reset. Place only the two jumpers EBC0 and EBC1 on
the jumper block JP3. Remove the BTLDIS and BUSACT jumpers. This
enables the ROM and maps it to segment 0.
The program must initialize the
SYSCON register so that
BUSACT is set and that BTYP
is 11b. This activates the
external bus and selects the
16-bit non-multiplexed external
bus configuration used by the
RST166-FLI board. Note that
the SYSCON register must be
modified before the EINIT
instruction. Refer to the sample program HELLO.ASM for a demonstration
of these steps. You may use HELLO.ASM as a template in developing
your own embedded code. HELLO.ASM was written with Rigel’s
integrated development environment READS166.

10.2 Programming the External FLASH
The industry-standard external Flash EEPROMs are placed into a write
mode by writing to addresses around 5555h and AAAAh. These write
operations activate an unlock sequence which allows subsequent write

VPPON
JP10

PGM

D7

JP3

EBCOPT
U9

L1

LT
1301

33u
H

BUSACT
EBC0
EBC1

VPP

32

operations. If you wish to program the external FLASH chips using the
R166FLI Utility Software you will need to place a jumper in the CFG1
position, and leave the jumpers in at the BUSACT and BTLDIS positions.
By adding a jumper in the CFG1 position you select the external FLASH
memory map of 48K ROM, and the rest RAM.

Use the menu option EEPROM | Download Hex file to EEPROM or
EEPROM | Erase EEPROM commands to download or erase the external
FLASH memory. The R66FLI Utility Software will only burn 48K of external
FLASH.

33

11. READS166 -- EVALUATION VERSION 2.0

11.1 Overview
READS166 V2.X runs in the MS-Windows 3.1 environment. READS166
supports the bootstrap loader feature and downloads a minimal monitor
during bootstrapping. The source code and description of the bootstrap
program are included in the documentation. READS166 evaluation
software includes: a monitor program, an assembler, and a C compiler.

READS166 V2.X has a more modular look than the previous versions.
Although the functionality of the READS166 components remain fully
integrated, the user interface has been improved by placing many of the
specific commands into sub-menus.

11.1.1 RMON166 - The READS166 Monitor Program
RMON 166 is downloaded after bootstrapping (or it may be placed into
ROM) and supports basic memory and port functions. RMON166 allows
downloading and running applications programs. The complete source
code for user modifications or upgrades is included on disk.

11.1.2 Ra66 - The READS166 Assembler
Ra66 is an assembler for the C166 family of controllers. It is a multi-pass
absolute assembler which generates HEX code directly from assembly
source code. The assembler in the demo version of READS166 limits the
size of code to about 2K.

11.1.3 Rc66 - The READS166 C Compiler
Rc66 is a C Compiler for the C166 family of processors. It compiles code
for the tiny memory model which fully resides in the first segment of
memory. Rc66 is a designed as a low-cost C compiler which provides a
quick development cycle for simpler applications which do not need more
than 64K of code, or the use of standard C libraries. Rc66 implements a
subset of ANSI C. Currently, structures, unions, enumerated types, and
the typedef directives are not implemented. Rc66 in the demo version of
READS166 limits the size of code to about 2K. Rc66 works in conjunction
with Ra66: first an assembly language program is generated from the C
source then a HEX file is created.

34

11.2 Main Menu Commands
The Main Menu contains the commands for higher-level tasks such as
building projects or setting hardware platform options . The major tasks
are delegated to the READS166 "Tools" which may include editors, host-
to-board communications subsystems and code generators. Tools are
distinguished by their own environments including sub-menus and
accelerator keys. Tools may be minimized when not used or simply closed
until needed again.

11.2.1 Project
Projects are collections of source code modules that are compiled as a
whole. Use the project menu to create new projects, open existing projects
or save projects. Modules written in different languages may be combined
in a project.
The use of projects is optional in READS166. It is meant to simplify the
bookkeeping of the various components of larger code. For short
programs, it is often more practical to simply write the code in the text
editor and compile it without first creating a project. (The demo version
has limitations on the types and sizes of projects.)

The Project Window is the space just under the Main Menu. If a project is
currently open, a list of modules of the project is displayed. You may
resize the Project Window, or use the scroll bars to view the module list.
The "Exit" command is also under the menu "Project" option.

11.2.2 Module
Modules are chunks of code which are combined to constitute a project.
An assembly program and an "include" file, for example, may be two
modules in a project. READS166 does not require the use of modules.
You may "Create", "Edit", or "Delete" modules of the current project using
the commands under the "Module" option. You may also "Import"
modules from other (existing) projects. The "Add Module" command lets
you select assembly or C programs which are currently not a member of
any project to be included in the current project.

35

11.2.3 Compile
The "Compile" menu commands allow you to build the current project, or
compile a single file. If the text editor holds a file, this current file is
compiled. Otherwise, a dialog box asks for a file to be compiled.
Currently, only an assembler and a C compiler are implemented. Other
language compilers are being developed.

11.2.4 Tools
Tools are the more powerful subsystems that let you carry out complicated
tasks. Tools usually have their own menus and hot-key combinations.
Currently there are two tools implemented, the "Text Editor," and "TTY
Window" which is used for communicating with the board.
Text Editor
The Text Editor is a MS Windows multi-document interface which holds
small text files. The Text Editor has its own menu with the standard File,
Edit, and Search commands. The user interface and hot-key combinations
are identical to the MS Windows Notepad program.

TTY Window
The TTY WINDOW encapsulates all host-to-board communications. It has
its own menu to set the communications parameters, to bootstrap the

36

board and to download compiled programs into the RAM of the board. The
current

communications port and the Baud rate are displayed in the caption (title)
of the TTY Window. If the currently selected port is invalid, this condition is
also reported in the caption. The Rigel boards use a default of rate of 9600
Baud. Make sure that the serial port you are using is not currently used by
another device (such as a serial mouse or a modem card), and that no
other peripheral device is competing for the same interrupt as the serial
port. You may review or modify the serial port parameters from the MS
Windows Control Panel.
Bootstrapping the Board
In the default configuration, all monitor programs are downloaded to the
boards after the boards are bootstrapped. That is, there is no ROM on the
board which is executed upon reset. Bootstrapping loads a small monitor,
called MinMon, which in turn loads a larger monitor RMON16x. Once the
monitor program is loaded, the monitor commands are available to the
user.

Open the TTY Window using the Main Menu command Tools | TTY.
Verify that the serial port selected is valid as reported in the caption of the
TTY Window. Now press the RESET button on the board. From the TTY
Window menu, select Bootstrap. When the board bootstraps, you may
press ENTER to view the monitor prompt. You may also press H (the
monitor Help command) to see a short list of available monitor commands.
Monitor Commands
The Reads monitors use single-letter commands to execute basic
functions. Port configurations and data, as well as memory inspection and
modifications may be accomplished by the monitor. Most of the single-
letter commands are followed by 4 hexadecimal digit addresses or 2
hexadecimal digit data bytes. The following is a list of the commands.
This list is also available by issuing the H command at the TTY Window.

37

R E A D S C O M M A N D S
--
C nn read port nn Configuration (DPnn)
C nn=mmmm set port nn Configuration (DPnn=mmmm)
D Download HEX file
G XXXX Go, execute code at XXXX
H Help, display this list
M XXXX Memory, contents of XXXX
M XXXX=nn Memory, change contents of XXXX to nn
M XXXX-YYYY=nn Memory, change block XXXX-YYYY to nn
P nn read Port nn (Pnn)
P nn=mmmm write to Port nn (Pnn=mmmm)

W XXXX Word memory, contents of XXXX
W XXXX=mmmm Word memory, change contents of XXXX to mmmm
W XXXX-YYYY=mmmm Word memory, change block XXXX-YYYY to mmmm

Downloading Programs
The board must be bootstrapped and the monitor program loaded before
programs may be downloaded to the board. At the monitor prompt, select
the TTY Window menu command Download | Download to RAM and
select the HEX file you wish to download.
Running programs
Before compiled programs are run, the board must be bootstrapped and
the monitor program downloaded. The compiled program must then be
downloaded to the board. Each compiled program has an origin. The
origin of assembly language programs are determined by the ORG pseudo
operation used in the source. The origin of C programs are written to the
Options | Compiler options dialog.
The monitor command G (go) followed by the address is used to run the
programs. For example, to run a program whose origin is at 4000h, type

G4000

11.2.5 Options
There are two types of "Options." Use the "Hardware Options" to select
the processor and the board you are using. This informs the READS166
environment which assembly and compile switches to invoke, as well as
which bootstrap and monitor programs to send to the boards.

38

The READS166 assembler and the C compiler also have options which
may be set by commands under the "Options" menu.

11.2.6 Help
This command invokes the READS166 Help system.

11.3 Using The Ra66, READS166 Assembler
Step 1. Writing an Assembly Language Program
Source code is entered using the Text Editor. Start the Text Editor from
the Main Menu using the Tools | Text Editor command. From the Text
Editor menu, create a new file by clicking on the File | New menu item.
You are now ready to type in your program.

Enter the following short program:

 MONITOR equ 0C000h
 CR equ 13
 LF equ 10

 org 4000h ; code starts at 4000h

 mov r1, #msgHello ; specify the string’s address
 calla cc_UC, print ; the subroutine print is in the

 ; file
r66util.inc

39

 jmpa cc_UC, MONITOR ; done -- return to the monitor

 #include "r66util.inc"
EVEN
msgHello:
 db CR, FL, "Hello World", CR, LF, 0
EVEN

This program displays a string on the host. Most of the work is done by the
subroutine "print" which is in the include file R66UTIL.INC. This file is
included in to the source by the assembler directive "#include". Note that
the program starts at address 4000h and returns to the monitor located at
C000h after execution.

After typing in your program, save it under the name "TUTOR.ASM".

Step 2. Assembling the program
Now that you have typed in TUTOR.ASM, you may assemble it. Use the
Main Menu Compile | Assemble file command. Provided that
TUTOR.ASM is in the active Text Editor window, it will be assembled. The
assembly results are displayed by a dialog.

Step 3. Detecting and correcting the errors
TUTOR.ASM will compile without errors if you did not make any
typographical errors in entering the code. You may wish to introduce a few
intentional errors to see how these errors are reported. For example,
change the line

 mov r1, #msgHello
to
 xmov r1, #msgHello
or to
 mov r100, #msgHello

Step 4. Running the program
When you assemble the program without errors, a HEX file is generated.
This file may now be downloaded the board and run. Open the TTY
Window using the Main Menu command Tools | TTY. Verify that the serial
port selected is valid as reported in the caption of the TTY Window. Now
press the RESET button on the board. From the TTY Window menu,
select Bootstrap. When the board bootstraps, you may press ENTER to
view the monitor prompt. You may also press H (the monitor Help
command) to see a short list of available monitor commands.

At the monitor prompt, select the TTY Window menu command Download
| Download to RAM and select the file TUTOR.HEX. The program is now
downloaded. Remember that the program had its origin at address 4000h.

40

From the monitor prompt issue the monitor G (go) command followed by
the address. That is, type

G4000

to branch to and execute the program.

11.4 Using The Rc66, READS166 C Compiler
Step 1. Writing a C language program
Source code is entered using the Text Editor. Start the Text Editor from
the Main Menu using the Tools | Text Editor command. From the Text
Editor menu, create a new file by clicking on the File | New menu item.
You are now ready to type in your program.

Enter the following short program:

/* ---------------------- */
char *szMsg="Hello World !";
int *pS0TIC=0xFF6C, *pS0TBUF=0xFEB0;

main(void){
 SendStr(szMsg);
}
/* ---------------------- */
void SendStr(char *sz){
 while(*sz) SendChar(*sz++);
}
/* ---------------------- */
void SendChar(char Ch){
 *pS0TBUF=Ch;
 while(!(*pS0TIC&0x80));
 *pS0TIC=0;
}
/* ---------------------- */

This program displays a string on the host. Note that the string is sent to
the host by placing each character in to the transmit buffer of serial port 0.
The function SendChar waits for the character to clear the transmit buffer
before returning. After typing in your program, save it under the name
"CTUTOR.C".
Step 2. Compiling the program
Before compiling CTUTOR.C, invoke the command Options | Compiler
options from the Main Menu. Click on the pushbutton titled "Defaults" to
select the default configuration. Notice that in the default configuration, the
code origin is placed at 4000h, and that the program returns to the monitor
after execution.

41

Next issue the Compile | C Compile file command from the Main Menu
and compile CTUTOR.C. A HEX file of the name CTUTOR.HEX will be
created.
Step 3. Detecting and correcting the errors
CTUTOR.C will compile without errors if you did not make any
typographical errors in entering the code. You may wish to introduce a few
intentional errors to see how these errors are reported. For example,
change the main function line

 SendStr(szMsg);
to
 SendStr(szMessage);

and recompile. Observe the errors generated by Rc66.
Step 4. Running the Compiled Program
When you compile the program without errors, a HEX file is generated.
This file may now be downloaded the board and run. Open the TTY
Window using the Main Menu command Tools | TTY. Verify that the serial
port selected is valid as reported in the caption of the TTY Window. Now
press the RESET button on the board. From the TTY Window menu,
select Bootstrap. When the board bootstraps, you may press ENTER to
view the monitor prompt. You may also press H (the monitor Help
command) to see a short list of available monitor commands.

At the monitor prompt, select the TTY Window menu command Download
| Download to RAM and select the file CTUTOR.HEX. The program is
now downloaded. Remember that the program had its origin at address
4000h. From the monitor prompt issue the monitor G (go) command
followed by the address. That is, type

G4000

to branch to and execute the program.

42

12. BILL OF MATERIALS
12.1 Parts List

QUANTITY PART DESIGNATORs
1 1nF CAPACITOR C10
1 10nF CAPACITOR C1

24 100nF CAPACITOR C2-9, C11-25
1 1uF CAPACITOR C26
4 2.2uF CAPACITOR C34-C37
1 22uF CAPACITOR C27
2 47uF CAPACITOR C29, C30
3 100uF CAPACITOR C33, C32, C31
1 1N4001 DIODE D5
1 1N4148 DIODE D1
1 1N5817 D4
4 LEDS D2, 3, 6, 7
1 PN2907 Q2
1 PN2222 Q1
1 33Uh coil L1
2 25x2 HEADER JP7, 8
2 DB 9 (short) P1, P2
2 PUSH BUTTON SW2, 3
4 2 HEADER JP10, 12, 13, HH
4 3 HEADER JP1, 2,
1 6 HEADER JP11
1 2X3 HEADER BTLDIS
1 2x4 HEADER JP3
1 TERM BLOCK JP9
1 SLIDE SWITCH SW2
1 10K GANG RESISTOR R3, R2
1 100 OHM RESISTOR R1
4 330 OHM RESISTOR R6, 7,10, 11
2 1K RESISTOR R4, 5
1 10K RESISTOR R12
1 2.2K RESISTOR R8
1 NOT USED R9
1 40 MEG Hz OSC U1
1 SAB 88C166 U2
1 DS1233 U3
1 GAL22V10 15NS U4
2 M29F040 U5, 6
2 62256 LP U7, 8
1 LT1301 U9
1 MAX232CPE U10

43

12.2 Parts Cross Reference

Designator Component Sheet Number Reference Sheet

1 C1 10nF 2 R166FCPU.SCH
2 C2 10nF 4 R166FMEM.SCH
3 C3 10nF 4 R166FMEM.SCH
4 C4 10nF 6 R166FVPP.SCH
5 C5 10nF 6 R166FVPP.SCH
6 C6 10nF 6 R166FVPP.SCH
7 C7 10nF 6 R166FVPP.SCH
8 C8 10nF 6 R166FVPP.SCH
9 C9 10nF 6 R166FVPP.SCH

10 C10 10nF 6 R166FVPP.SCH
11 C11 10nF 6 R166FVPP.SCH
12 C12 10nF 6 R166FVPP.SCH
13 C13 10nF 6 R166FVPP.SCH
14 C14 10nF 6 R166FVPP.SCH
15 C15 10nF 6 R166FVPP.SCH
16 C16 10nF 6 R166FVPP.SCH
17 C17 10nF 6 R166FVPP.SCH
18 C18 10nF 6 R166FVPP.SCH
19 C19 10nF 6 R166FVPP.SCH
20 C20 10nF 6 R166FVPP.SCH
21 C21 10nF 6 R166FVPP.SCH
22 C22 10nF 6 R166FVPP.SCH
23 C23 10nF 6 R166FVPP.SCH
24 C24 10nF 6 R166FVPP.SCH
25 C25 100nF 2 R166FCPU.SCH
26 C26 1uF 2 R166FCPU.SCH
27 C27 22uF 2 R166FCPU.SCH
28 C28 1nF 5 R166FPIO.SCH
29 C29 47uF 6 R166FVPP.SCH
30 C30 47uF 6 R166FVPP.SCH
31 C31 100uf 6 R166FVPP.SCH
32 C32 100uf 6 R166FVPP.SCH
33 C33 100uf 6 R166FVPP.SCH
34 C34 2.2uF 7 R166FSER.SCH
35 C35 2.2uF 7 R166FSER.SCH
36 C36 2.2uF 7 R166FSER.SCH
37 C37 2.2uF 7 R166FSER.SCH
38 C38 10nF 6 R166FVPP.SCH
39 C39 10nF 6 R166FVPP.SCH
40 C40 220uF 6 R166FVPP.SCH
41 C41 10nF 6 R166FVPP.SCH
42 D1 1N4148 2 R166FCPU.SCH
43 D2 BOOT LED 3 R166FBTL.SCH
44 D3 AUX LED 3 R166FBTL.SCH
45 D4 1N5817 6 R166FVPP.SCH

44

46 D5 1N4001 6 R166FVPP.SCH
47 D6 PWR 6 R166FVPP.SCH
48 D7 PGM 6 R166FVPP.SCH
49 D8 BR 6 R166FVPP.SCH
50 JP1 REF 2 R166FCPU.SCH
51 JP2 GND 2 R166FCPU.SCH
52 JP3 EBCOPT 2 R166FCPU.SCH
53 JP4 CFG0 3 R166FBTL.SCH
54 JP5 CFG1 3 R166FBTL.SCH
55 JP6 BTLDIS 3 R166FBTL.SCH
56 JP7 MEMORY 5 R166FPIO.SCH
57 JP8 I/O PORTS 5 R166FPIO.SCH
58 JP9 5V 6 R166FVPP.SCH
59 JP10 VPPON 6 R166FVPP.SCH
60 JP11 RS-232 7 R166FSER.SCH
61 JP12 ATXD 7 R166FSER.SCH
62 JP13 ARXD 7 R166FSER.SCH
63 L1 33uH 6 R166FVPP.SCH
64 P1 HOST 7 R166FSER.SCH
65 P2 S1 7 R166FSER.SCH
66 Q1 2N2222 3 R166FBTL.SCH
67 Q2 PNP 6 R166FVPP.SCH
68 R1 100 2 R166FCPU.SCH
69 R2E 10K 6 R166FVPP.SCH
70 R2D 10K 2 R166FCPU.SCH

R2C 10K 2 R166FCPU.SCH
R2B 10K 2 R166FCPU.SCH
R2A 10K 2 R166FCPU.SCH

71 R3D 10K 3 R166FBTL.SCH
R3C 10K 3 R166FBTL.SCH
R3B 10K 3 R166FBTL.SCH
R3A 10K 3 R166FBTL.SCH
R3E 10K 3 R166FBTL.SCH

72 R4 1K 3 R166FBTL.SCH
73 R5 1K 3 R166FBTL.SCH
74 R6 390 3 R166FBTL.SCH
75 R7 390 3 R166FBTL.SCH
76 R8 2.2K 5 R166FPIO.SCH
77 R9 10K 6 R166FVPP.SCH
78 R10 330 6 R166FVPP.SCH
79 R11 330 6 R166FVPP.SCH
80 R12 10K 6 R166FVPP.SCH
81 R13 10K 2 R166FCPU.SCH
82 R14 10K 2 R166FCPU.SCH
83 SW1 RESET 2 R166FCPU.SCH
84 SW2 USER/MON 3 R166FBTL.SCH
85 SW3 NMI 5 R166FPIO.SCH
86 U1 40MHz 2 R166FCPU.SCH
87 U2 SAB 88C166 2 R166FCPU.SCH

45

88 U3 DS1233 2 R166FCPU.SCH
89 U4 GAL22V10 3 R166FBTL.SCH
90 U5 M29F010 4 R166FMEM.SCH
91 U6 M29F010 4 R166FMEM.SCH
92 U7 62256 4 R166FMEM.SCH
93 U8 62256 4 R166FMEM.SCH
94 U9 LT1301 6 R166FVPP.SCH
95 U10 MAX232 7 R166FSER.SCH

46

13. TOP OVERLAY AND CIRCUIT DIAGRAMS

