
RMB165-I
USERS GUIDE

Version 1.0
December 1996

RIGEL CORPORATION
PO Box 90040

Gainesville, Florida 32607
(352) 373-4629

FAX (352) 373-1786
www.Rigelcorp.com

(C) 1997 by Rigel Corporation.

All rights reserved. No part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Rigel Corporation.

The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its
compatibles. IBM PC is a trademark of International Business Machines, Inc. MS
Windows is a trademark of Microsoft, Inc.

WARRANTY

RIGEL CORPORATION- CUSTOMER AGREEMENT
1. Return Policy. This return policy applies only if you purchased the RMB-165I industrial board

directly from Rigel Corporation.
If you are not satisfied with the items purchased, prior to usage, you may return them to Rigel
Corporation within thirty (30) days of your receipt of same and receive a full refund from Rigel
Corporation. You will be responsible for shipping costs. Please call (904) 373-4629 prior to shipping. A
refund will not be given if the READS package has been opened.

2. Limited Warranty. Rigel Corporation warrants, for a period of sixty (60) days from your receipt, that
READS disk(s), hardware assembled boards and hardware unassembled components shall be free of
substantial errors or defects in material and workmanship which will materially interfere with the proper
operation of the items purchased. If you believe such an error or defect exists, please call Rigel
Corporation at (904) 373-4629 to see whether such error or defect may be corrected, prior to returning
items to Rigel Corporation. Rigel Corporation will repair or replace, at its sole discretion, any defective
items, at no cost to you, and the foregoing shall constitute your sole and exclusive remedy in the event of
any defects in material or workmanship.

THE LIMITED WARRANTIES SET FORTH HEREIN ARE IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

YOU ASSUME ALL RISKS AND LIABILITY FROM OPERATION OF ITEMS PURCHASED AND RIGEL
CORPORATION SHALL IN NO EVENT BE LIABLE FOR DAMAGES CAUSED BY USE OR
PERFORMANCE, FOR LOSS PROFITS, PERSONAL INJURY OR FOR ANY OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES. RIGEL CORPORATION’S LIABILITY SHALL NOT EXCEED THE
COST OF REPAIR OR REPLACEMENT OF DEFECTIVE ITEMS.

IF THE FOREGOING LIMITATIONS ON LIABILITY ARE UNACCEPTABLE TO YOU, YOU SHOULD
RETURN ALL ITEMS PURCHASED TO YOUR SUPPLIER.

3. READS 166 (referred to as simply READS) License. The READS being purchased is hereby licensed to
you on a non-exclusive basis for use in only one computer system and shall remain the property of Rigel
Corporation for purposes of utilization and resale. You acknowledge you may not duplicate the READS
for use in additional computers, nor may you modify, disassemble, translate, sub-license, rent or transfer
electronically READS from one computer to another, or make it available through a timesharing service
or network of computers. Rigel Corporation maintains all proprietary rights in and to READS for
purposes of sale and resale or license and re-license.

BY BREAKING THE SEAL AND OTHERWISE OPENING THE READS PACKAGE, YOU INDICATE
YOUR ACCEPTANCE OF THIS LICENSE AGREEMENT, AS WELL AS ALL OTHER PROVISIONS
CONTAINED HEREIN.

4. Board Kit. If you are purchasing a board kit, you are assumed to have the skill and knowledge
necessary to properly assemble same. Please inspect all components and review accompanying
instructions. If instructions are unclear, please return the kit unassembled for a full refund or, if you
prefer, Rigel Corporation will assemble the kit for a fee of $30.00. You shall be responsible for shipping
costs. The foregoing shall apply only where the kit is unassembled. In the event the kit is partially
assembled, a refund will not be available, however, Rigel Corporation can, upon request, complete
assembly for a fee based on an hourly rate of $50.00. Although Rigel Corporation will replace any
defective parts, it shall not be responsible for malfunctions due to errors in assembly. If you encounter
problems with assembly, please call Rigel Corporation at (904) 373-4629 for advice and instruction. In
the event a problem cannot be resolved by telephone, Rigel Corporation will perform repair work, upon
request, at the foregoing rate of $50.00 per hour.

5. Governing Law. This agreement and all rights of the respective parties shall be governed by the laws of
the State of Florida.

Table Of Contents

1. OVERVIEW ..1
1.1 Hardware ..1
1.2 Software: READS166 Evaluation Package ..2
1.3 Parts List ...2

2. QUICK START TUTORIAL ..3
2.1 System Requirements for READS166 ..3
2.2 Software Installation..3
2.3 Start up ...3
2.4 Configuring READS and Initiating Host-to-Board Communications4
2.5 Bootstrapping ..4
2.6 Verify that the Monitor is Loaded ..4
2.7 Downloading Programs...4
2.8 Running a Program ...4
2.9 Using Help ..5

3. OPERATING MODES..6
3.1 Power..6
3.2 Serial Port 0 ..6
3.3 Serial Port 1 ..6
3.4 Push Buttons...6

3.4.1 Reset (S4) ..6
3.4.2 NMI (S5) ...6

3.5 LEDS...6
3.6 Slide Switch (S3)..7

4. JUMPER CONFIGURATIONS...8
4.1 JP10 (Reset Options)...8

4.1.1 P4 ..8
4.1.2 P6 ..8

4.2 CFG0 / CFG1 / CFG2 ...8
4.3 RAM and ROM Jumpers ...8
4.4 Serial Port Jumpers...8

4.4.1 JP8 (SO)...8
4.4.2 JP9 (SSC)...8

 4.5 JP1 and JP2 ..9
5. MEMORY BLOCK OPTIONS ..10

5.1 RAM Memory Options...10
5.2 ROM Memory Options ..10
5.3 Default Memory Setting...10
5.4 Alternate Memory Maps ..10

6. THE ROM MEMORY BLOCK ..12
6.1 Configuring U3 and U4..12

6.1.1 Chip Selection ...12
6.1.2 Jumper Selection ...12

6.2 Downloading and Running Programs in ROM ..12
6.2.1 RAMs...12

6.2.2 EEPROMs ...13
6.2.3 EPROMs..14

7. PAL EQUATIONS..16
7.1 U5 Equations ..16
7.2 U6 Equations ..17

8. HEADERS ...19
8.1 JP11 - System Header ..19
8.2 JP12 - Input/Output Header ..20
8.3 JP13 - Extra Input/Output Header of the RMB-165.....................................21

9. BOOTSTRAPPING...22
10. THE MONITOR PROGRAMS..25

10.1 Minimal Monitor ...25
10.2 MON167 Monitor...26

11. BILL OF MATERIALS ..28
12. CIRCUIT DIAGRAMS ..29

1. OVERVIEW
The RMB-165I industrial board contains the Siemens SAB C165 16-bit high-performance
microcontroller in the metric plastic quad-flat pack package. The microcontroller is run with
a 16-bit nonmultiplexed data bus and an 18-bit nonmultiplexed address bus. The board
may be configured several different ways depending on the type of reset and ROM
memory options used. The default configuration is the 64K RAM and no ROM mode. In
this mode, the monitor program or user program is downloaded to RAM using the SAB
C165 bootstrap feature. A set of option headers, decoded by PAL devices make the RMB-
165I a flexible hardware platform.

The RMB-165I is compatible with the RMB-166, RMB-166I and the RMB-167. The board
size, the location and function of all headers are kept the same. The RMB-165I has
these features for improved industrial preformance.

1. Industrial strength shielding.
The printed circuit board is a six-layered board with separate Vcc and Ground
planes for improved shielding designed to operate in noisy industrial applications.

2. EERPOM/Battery-Backed RAM capability.
Sockets U3 and U4 accept 32K EPROMs (27C256), 32K EEPROMs (28C266), or
32K RAMs (62C256).

3. Higher memory map resolution.
The PALCE22V10-type device used in U6 has access to A13 to A17 in determining
the memory map. The memory map has a resolution of 8 Kilobytes. For example,
the first segment may consist of 8K of ROM and 56K of RAM.

1.1 Hardware
• SAB C165 high-performance microcontroller

Bootstrap loading feature
Runs at 40Mhz with zero wait states
One serial port
One high speed synchronous serial channel
Five 16 bit timers
Watchdog timer

• Serial port uses a MAX232 driver, terminates at DB-9 connector and a 3-post connector
• 71 bits of general-purpose inputs/outputs
• Accommodates 64K or 256K of SRAM (64K installed)
• Accommodates 64K of EPROM/EEPROM/RAM (not installed)
• Push buttons for RESET# and NMI# (non-maskable interrupt)
• GAL decoded memory map for maximum flexibility
• GAL’s can be reprogrammed by user or by RIGEL Corporation
• Microcontroller surface mounted to the board
• Machine screw sockets under all other IC’s
• Power on LED
• Power consumption is less than 175mA running at 40MHz
• Flexible and embeddable 4" x 6 1/2" 6 layer industrial board with separate VCC and

Ground planes
• Mounting holes in corners

1.2 Software: READS166 Evaluation Package
• Runs in the MS-Windows 3.1 environment.
• Supports the bootstrap loader feature. READS166 downloads a minimal monitor during

bootstrapping.
• Source code and description of the bootstrap program.
• Allows downloading and running applications programs
• Demonstration programs
RMON167 - monitor program
• Downloaded after bootstrapping (or may be placed into ROM)
• Supports basic memory and port functions.
• Downloads and runs applications programs.
• Complete source code for user modifications or upgrades.

1.3 Parts List
Your RMB-165I package includes the following:
Hardware

1. RMB-165I board with a 64K of static RAM.
2. Serial modem cable with adapter

Software
1. RMON167 monitor program with source code.
2. Evaluation version of READS166 for Microsoft Windows.

Documentation
1. User’s Guide with circuit diagrams
2. Complete chip documentation from Siemens with application notes
3. Bootstrap file source code.
4. Sample programs.

A regulated 5 volt 500mA (+/- 5%) power source is to be supplied by the user.

2. QUICK START TUTORIAL

2.1 System Requirements for READS166
READS166 runs in MS Windows and is installed in a one-step operation by running the
INSTALL.EXE from DOS or the Windows File Manager.

READS166 is designed to work with an IBM PC or compatible 386 or better, running MS-
Windows 3.1 or later. Although Windows may be run without a mouse it is much more
practical to use one. A mouse is recommended when using READS166.

READS166 uses either COM1 or COM2 to talk to the RMB-165I. These ports are driven
using the default interrupt request lines IRQ4 and IRQ3, respectively. Make sure that you
do not have other peripherals such as a modem or a serial mouse competting for the same
interrupts. They may cause a conflict when running READS166. If you are using a COM
port which was used previously for a modem or a serial mouse, the software drivers for
these devices should be removed as well. If you remove the mouse or modem without
removing the software driver the computer will not recognize that a different device is now
using the serial port. The computer will continue to expect mouse or modem commands to
and from the serial port. Since READS uses different commands the board will not
respond.

2.2 Software Installation
Place the READS166 diskette in your floppy disk drive and run INSTALL. INSTALL may
be run from a DOS prompt or from the Windows File Manager. For example if the
distribution disk is in drive A:, and you are installing from DOS type:

A:install

Then enter the drive and directory information as requested.

To install from Windows choose Run from the Program Manager’s File menu. Type

A:install

in the Command Line text box. Click on OK or press ENTER to begin installation.
Then enter the drive and directory information as requested.

2.3 Start up
1. Connect the RMB-165I to a well-regulated 5 Volt supply (+/-5%).
2. Connect the RMB-165I to the PC host via a modem cable.
3. Check to make sure jumpers are the correct position. (JP10 should have a jumper in

location P4 and P6.) This is the default configuration for the RMB-165I and the board
will be populated this way from the manufacturer.

4. Run the READS166 host driver from MS Windows. You may use the Windows File
Manager to launch READS166. You may also start READS166 by double clicking on
the READS166 icon.

2.4 Configuring READS and Initiating Host-to-Board
Communications

1. Select the processor type using the Processor | SAB C165 menu command.
2. Select the communication port parameters using the TTY | Setup menu command.

You will need to select the COM port you are using, then the default configuration for
the rest of the parameters are as follows: 8 data bits, 9600 baud rate, 1 stop bit and
none for the parity bits.

3. Open the TTY window using the TTY | Connect menu command.

2.5 Bootstrapping
1. Press the reset button on the board and wait 3 seconds.
2. Select item TTY | Bootstrap | Bootstrap and download monitor. The board will now

bootstrap.

You can observe as the bytes of the monitor are downloaded to the board. The green LED
is turned on during bootstrapping, after the EINIT instruction, but before the monitor is
downloaded. When bootstrapping is completed, the READS166 monitor prompt appears
in the TTY window.

You may also use the BSO/Tasking Crossview Monitor/Debugger to bootstrap the RMB-
165I. You may need to press either the RESET or NMI# button on the RMB-165I.

2.6 Verify that the Monitor is Loaded
Make sure the TTY window is active, clicking the mouse inside the TTY window to activate
it if necessary. Then type the letter ’’H’’ (case insensitive) to verify that the monitor
program is responding. The ’H’ command displays the available single-letter commands
the monitor will recognize.

2.7 Downloading Programs
The example program DEMO05C.ASM repeatedly sends a message to the host in an
interrupt driven fashion. The program is already assembled into a HEX file and given in
the distribution disk.

Select the TTY | Download menu item. Choose the demo program DEMO05C.HEX from
the list of files. Press OK to download the file. You may view the source code by opening
the file as a document using the File | Open menu command.

2.8 Running a Program
1. The program DEMO05C starts at address 4000h as specified by the ORG pseudo

operation in its source code. In order to run DEMO05C, select the TTY | Run menu
item and type 4000 at the address field. Press OK to run the program. Alternately after
the program is downloaded when the monitor prompt appears you may type G4000 to
run the program.

2. Some demo programs run in an endless loop. Press the NMI button on the board to
terminate the program and return to the monitor. Alternatively, you may press the
RESET button. In this case, however, the bootstrapping operation must be repeated,
and the monitor program reloaded.

2.9 Using Help
Most of the file operations can be performed by clicking on the icons of the speedbar
(toolbar) placed just below the main menu. You can get more information from the
READS166 Help. Simply select Help | Contents from the main menu. Once in the Help
System, select topic Toolbar for information on the icons of the speedbar.

3. OPERATING NOTES
The RMB-165I needs two connections: to a 5 volt (+/- 5%) well regulated power supply and
to the serial port of a host via a modem cable.

3.1 Power
Power is brought to the RMB-165I board by a two-position screw-type terminal block or a
DC jack. A well regulated 5V DC source is required. The (+) and (-) terminals are marked
on the board. The center connector of the DC jack should be the (-) terminal and the
outside the (+) terminal. Note that a diode is placed across the input in reverse. Thus if
the power is applied to the RMB-165I board in reverse polarity, the diode will short the
power supply attempting to prevent damage to the board. Populated with 64K of CMOS
RAM, the RMB-165I draws less than 175 mA.

3.2 Serial Port 0
Serial port 0 is accessed through the RS-232 level converter. The microcontroller supports
the transmit and receive signals. A minimal serial port may be constructed with just 3 lines:
transmit, receive, and ground, disregarding all hardware handshake signals. Port P1
(HOST) of the RMB-165I is a DB-9 female connector used to connect the board to an IBM
compatible PC. A straight-through modem cable may be used. That is a cable connecting
pin 2 of the RMB-165I to pin 2 of the host, and similarly pin 3 to pin 3, and pin 5 to pin 5.
This cable and a DB9-DB25 adapter is supplied when the board is purchased directly from
Rigel Corporation. JP8 is a 3-pin header, which carries the same signals as P1.

3.3 Serial Port 1
Serial port 1 is used as a synchronous serial channel by the SAB-C165I. It has 3 TTL-level
signals, MRST (Master Receive Slave Transmit), MTRS (Master Transmit Slave Receive),
and SCLK (Serial Clock).

3.4 Push Buttons
3.4.1 Reset (S4)
The reset button is connected to the reset pin of the processor and resets the board.
Before bootstrapping press the reset button and wait 3 seconds to allow the processor to
initialize. The board is then able to carry out the bootstrap instructions.

3.4.2 NMI (S5)
The NMI button (non-maskable interrupt) is connected to the NMI pin of the processor.
When pressed it generates a non-maskable interrupt. RMON places a jump instruction at
the NMI vector (address 8). Pressing the NMI, while the RMON is present, invokes the
monitor program. This works as long as the monitor program in RAM is not altered.
Pressing the NMI button is usually sufficient to interrupt user’s program which are
downloaded and run under RMON. Application programs placed in ROM may use a
similar scheme to initialize the system when the NMI button is pressed.

 3.5 LEDS
The RMB-165I has three LEDs. The red LED, when lit, shows power is connected to the
board.

The green LED indicator marked RO (Reset Out) is connected to a GAL device. The LED
is turned on after system initialization is completed. More specifically, the LED is turned on

when the RSTIN# is high and RSTOUT# makes a 0-to-1 transition, which normally follows
an EINIT instruction. The LED RO will be off and remain off until the bootstrap loader
successfully completes loading the bootstrap file into RAM.

The yellow LED is an auxiliary LED, whose state is determined by the GAL equations. For
example the user may program the yellow LED to indicate the presence of a program in
EPROM. In the default configuration the yellow LED is opposite of the green LED.

3.6 Slide Switch (S3)
The slide switch is inactive on the board with the factory GALs installed. The slide switch is
intended to be used in an application specific manner. The user may burn GALs to
implement the switch.

4. JUMPER CONFIGURATIONS

4.1 JP10 (Reset Options)
JP10 is a 16 x 2 header. Each pair of posts corresponds to a bit of Port 0. The silkscreen
is labeled from 0 to 15 indicating bit or jumper positions. Some of the SAB C165 operating
modes are determined during reset by the state of Port 0 bits. (Refer to the Siemens data
book for further information.) Inserting a jumper in JP10 connects the corresponding bit of
Port 0 to ground via a 15K resistor. This, in turn, sets the operating mode. For example,
the Bootstrap mode is invoked when bit 4 of Port 0 is held low at reset. The RMB-165I
uses two of these bits for configuring the board.

4.1.1 P4
Bit 4 of Port 0 invokes the bootstrap mode when held low at reset. Inserting a jumper at
position 4 (P4) on JP10 grounds bit 4, causing the board to bootstrap at startup or reset.
The RMB-165I’s default configuration is with this jumper P4, installed. With P4 removed
and a user’s program with starting address at zero in ROM, the board will run the user’s
program upon reset.
4.1.2 P6
Bit 6 of Port 0 determines the bus mode of the SAB C165. P6 is inserted to ground bit 6 in
the default configuration of the RMB-165I. P6 should remain in place at all times to use the
onboard memory of the RMB-165I.

4.2 CFG0 / CFG1 / CFG2
CFG0 / CFG1 / CFG2 configure the memory block size and location. The default memory
map of 64K RAM and no ROM is with these jumpers removed. Please see the alternate
memory map section (5.4) for more information on these jumpers.

4.3 RAM and ROM Jumpers
These are the two jumpers located next to U4. These jumpers are set according to the
type of devices used in sockets U3 and U4. Note that RAMs and EEPROMs have the
same pinout. If U3 and U4 hold EPROMs, insert two jumpers, one in each of jumpers, so
that the center posts are connected to the end posts marked ROM. If U3 and U4 hold
RAM or EEPROM devices, insert the jumpers so that the center posts are connected to the
end posts marked RAM. The RMB-165I factory setting is with these jumpers removed.

4.4 Serial Port Jumpers
The SAB C165 has two serial ports. Serial port 0 is accessed through the RS-232 level
converter. Serial port 1 is used as a synchronous serial channel by the SAB-C165I.

4.4.1 JP8 (SO)
JP8 is the secondary access for serial port 0. JP8 is a 3-pin header, which carries the
same signals as P1. JP8 is convenient if the board is to be used as an embedded
controller. JP8 is also denoted by SO and its 3 lines by G (Ground), T (Transmit), and R
(Receive), on the RMB-165I silk-screen. JP8 is intended for embedded uses of the
RMB165I when P1 is not populated.

4.4.2 JP9 (SSC)
Header JP9 is the access for serial port 1. Header JP9 carries the 3 TTL-level signals,
MRST (Master Receive Slave Transmit), MTRS (Master Transmit Slave Receive), and
SCLK (Serial Clock) as well as provides VCC and GND for reference. Header JP9 is also
denoted by SSC (Serial Synchronous Channel) on the silk-screen. The individual pins of

the header are denoted by VCC, R, T, C, and GND, which correspond to VCC, MRST,
MTSR, SCLK, and GND, respectively.

4.5 JP1 and JP2
These jumpers are not used at present.

5. MEMORY BLOCK OPTIONS
There are two blocks of memory available on the RMB-165I board. There is a RAM block
which may hold 64K or 256K of memory, and there is a ROM block which may hold up to
64K of memory.

5.1 RAM Memory Options
The RAM block is designed to take static RAMs, either 32K 62C256-type, or 128K 681000-
type static RAM chips. Alternately 62C256-type battery-backed RAMs may be used in the
RAM block. Two chips are needed, one for EVEN and the other for ODD addresses.
These chips are placed in 32-pin sockets marked U1 and U2. Place 28-pin 32K RAM
devices closer to the 2 X 25 header, away from the processor. Note that the 28-pin RAM
devices line up with the ROM sockets.

The SAB C165 may be programmed to insert wait cycles during external memory access.
However, in order to run the SAB C165 at its full potential of 40MHz, the RAMs should be
rated at 70 nano seconds or faster.

5.2 ROM Memory Options
The ROM block of memory accepts a variety of non-volatile devices. 27C256-type 32K
EPROMs, 62C256-type battery-backed RAMs or 28C256-type EEPROMs may reside in
this location. Alternately 62C256-type static RAMs may be used. Two chips are needed,
one for EVEN and the other for ODD addresses. These chips are placed in 28-pin sockets
marked U3 and U4.

The SAB C165 may be programmed to insert wait cycles during external memory access.
However, in order to run the SAB C165 at its full potential of 40MHz, the EPROMs should
be rated at 85 nano seconds or faster and the battery-backed RAMs should be 70 nano
seconds or faster. At present the EEPROMs available do not allow running the board with
zero wait states.

5.3 Default Memory Setting
The default memory map assumes 64K of RAM with no EPROM. In this configuration, the
board is bootstrapped and run. JP10 should have a jumper in location P4 and P6. This is
the default configuration for the RMB-165I and the board will be populated this way from
the manufacturer. Programs are downloaded into RAM and then run.

5.4 Alternate Memory Maps
The factory installed GAL supports alternative memory maps with the jumpers CFG0 /
CFG1 / CFG2. CFG0 and CFG1 select RAM and ROM memory blocks, and CFG2
determines memory block sizes. The default configuration of the RMB-165I is with no
jumpers installed. This selects 64K of RAM. The following table shows which jumpers to
install for the alternate memory maps supported by the factory programmed Gals.

 Memory Map with CGF2 jumper removed
 Jumper location Low 48K High 16K
 NONE RAM RAM
 CFG0 ROM RAM
 CFG1 RAM ROM
 CFG0 and CFG1 ROM ROM

Memory Map with CGF2 jumper inserted
 Jumper location Low 32K High 32K
 NONE RAM RAM
 CFG0 ROM RAM
 CFG1 RAM ROM
 CFG0 and CFG1 ROM ROM

The RAM and ROM blocks of memory can be mapped in a variety of ways with a minimal
memory block size of 8K. The EPROMs/EEPROMs may be configured to occupy low
memory, high memory, or start at low memory and then relocate to high memory upon
initialization by appropriate jumper selections. The GALs may be reprogram by the user, or
RIGEL Corporation, to support the different memory maps. Please call Rigel Corporation if
more information about user designed memory maps is needed.

6. THE ROM MEMORY BLOCK
The GAL programs support a variety of alternative memory maps using the jumpers CFG0,
CFG1, and CGF2. See section 5.4 to determine the memory map configuration you wish
to use. The following sections describe how to select which chips to use in the ROM
memory block, and how to download to, and run programs from, the ROM block.

6.1 Configuring U3 and U4
6.1.1 Chip Selection
The RMB-165I has two sockets marked U3 and U4 which are intended for a variety of non-
volatile devices. U3 and U4 are considered to be the ROM block of memory no matter
which type of devices are selected. Typically 27C256-type 32K EPROMs, 62C256-type
battery-backed RAMs or 28C256-type EEPROMs are used. Note that RAMs and
EEPROMs have the same pinout and while it is possible to populate the sockets with a mix
of these two devices it is recommended that you use the same device and speed in both
sockets to insure smooth program operation. It is not possible to populate an EPROM in
one socket and a RAM or EEPROM in the other since the pinouts of the devices are
different. When downloading programs to these devices the odd bytes are loaded into U4
and the even bytes are loaded into U3.

6.1.2 Jumper Selection
The jumpers located next to U4 select which memory devices are to be used in U3 and U4.
One end of the jumpers is marked RAM and the other end is marked ROM. Note that
since RAMs and EEPROMs have the same pinout the jumper setting is the same for these
devices. If U3 and U4 hold RAM or EEPROM devices, insert two jumpers, so that the
center posts of both jumpers are connected to the end posts marked RAM. If U3 and U4
hold EPROMs, insert the two jumpers so that the center posts are connected to the end
posts marked ROM.

6.2 Downloading and Running Programs in ROM
The method of loading programs into the ROM block varies depending on the type of
devices used. The following are the three options available to the user.

6.2.1 RAMs
Both battery-backed RAMs and static RAMS may be used in U3 and U4. When using
RAMs there are two things to remember, any program in a static RAM will be lost if the
power to the board is disconnected, and U3 and U4 are the ROM memory block even if
populated with RAMs. The procedure for downloading to the two types of RAMS is the
same.

Downloading programs
1. With the power disconnected populate U3 and U4 with the RAMs.
2. Insert the two jumpers by U4 in the RAM position.
3. Connect the power to the board.
4. Bootstrap the board as usual.
5. Insert jumpers at CFG0, CFG1, and CGF2 to select the alternate memory map you

wish to use. (See section 5.4)
6. Select the TTY | Download menu item. Choose your program from the list of files.
7. Press OK to download the file.

Running the program with the starting address above zero.
1. In order to run the program select the TTY | Run menu item and type the

 program’s starting address at the address field.
2. Select OK to run the program.
3. Alternately after the program is downloaded when the monitor prompt

appears you may type G(starting address) to run the program.

Running the program with the starting address at zero.
1. Remove the jumper located in P4 of header JP10. This prevents the

processor from entering the bootstrap mode when the reset button is
pressed.

2. Press the reset button to run the program.
3. If the power to the board is disconnected the program will run at

startup. This will not work with regular 62256K RAMs as the program is
lost when the power is turned off. As long as there are no surges or
brown out conditions when the power is reconnected to the board the
reset button should not have to be pressed when using battery-backed
RAMs.

6.2.2 EEPROMs
The RMB-165I accepts 28C256 EEPROMs in U3 and U4. When burning the EEPROMS
using the READS166 software you must select the memory map with 48K ROM and 16K
RAM, (jumper CFG0 inserted, CFG1 and CFG2 removed). This allows READS166 to
burn the EEPROMS and activate the security bit located in EEPROM upper memory.
READS166 will not burn the EEPROMS if any other memory map is selected. However,
once the EEPROMS are burnt, you may select other memory maps by rearranging the
jumpers. There are three different ways you can download (or burn) EEPROMS. The first
is to burn the EEPROMs using the READS166 monitor command TTY | Burn EEPROM.
The second is to use the DOS EEPROM burn utility supplied on the READS166 disc and
located on the BBS. The last method is to burn in run time. This involves writing your
program so that it calls a burn EEPROM subroutine in another part of the program. This is
especially useful for "in the field" program changes.

Programming the EEPROMs
Burning EEPROMs from the READS166 monitor program

1. With the power disconnected populate U3 and U4 with the EEPROMs.
2. Insert the two jumpers by U4 in the RAM position.
3. Connect the power to the board.
4. Bootstrap the board as usual.
5. Select the memory map with 48K ROM and 16K RAM, jumper CFG0

inserted, CFG1 and CFG2 removed.
6. Select the TTY | Burn EEPROM menu item. Choose your program from the

list of files.
7. Select OK to burn the EEPROM.
8. Once EEPROM is burned you may switch the CFG0, CFG1, and CFG2

jumpers to change the memory map.

Burning EEPROMs using the DOS utility
Set up the board as in steps 1 - 5 above.
At present the README file for the DOS utility is located on the BBS. Please
download the README file and follow the directions there.

Burning the EEPROMs in run time
Burning an EEPROM byte takes about 1000 times longer than a memory write
cycle. Once a byte is written to the EEPROM, the processor should not address the
EEPROM until after the byte is burnt. Thus, the code to burn the EEPROM byte
must reside outside the EEPROM.
One approach is to load the burn code into RAM. The demonstration program
BURN01.ASM contains a subroutine to burn an EEPROM byte. This subroutine is
transferred into RAM and then invoked. The image or copy of the subroutine in
RAM burns the EEPROM byte. It returns to the calling program in EEPROM only
after the byte is burnt.

Running the program with the starting address above zero.
1. In order to run the program select the TTY | Run menu item and type the

program’s starting address at the address field.
2. Select OK to run the program.
3. Alternately after the program is downloaded when the monitor prompt

appears you may type G(starting address) to run the program.

Running the program with the starting address at zero.
1. Remove the jumper located in P4 of header JP10. This prevents the

processor from entering the bootstrap mode when the reset button is
pressed.

2. Press the reset button to run the program.
3. Or if the power to the board is disconnected the program will run at

startup. As long as there are no surges or brown out conditions when the
power is reconnected to the board the reset button should not have to be
pressed when using EEPROMs.

6.2.3 EPROMs
The RMB-165I accepts 27C256-type EPROMs in the ROM memory location. The
EPROMs must have the program burned into them using a separate EPROM burner. The
RMB-165I will not burn the EPROMs. Using EPROMs in the ROM memory location is the
most time consuming, but due to the low cost of the EPROMs it is the most inexpensive
method, if you already own an EPROM burner. EPROMs have one other advantage over
battery-back RAMs and EEPROMs, they are the most stable method of storing a program
in memory. Power disconnects, surges, and brown-outs do not affect their performance.

To develop the EPROM program you may write it and ran out of the RAM block to debug,
or you may write and debug it using ROM memory block. If you use the RAM memory
block some of the address locations may need to be changed. If you use EEPROMS or
RAM in the ROM location you must remember to change the jumpers above U4 to select
the EPROM option when you put the EPROMs on the board. Also any variables in the
program must be put into RAM since the EPROM program can not be changed in circuit.

Once the program is debugged it may be burned into the EPROMs using a stand alone
EPROM burner.

Programming the EPROMs
The EPROMs must have the program burned into them using a separate EPROM
burner. The RMB-165I will not burn the EPROMs. When programming the EPROMS,
split your code into odd and even bytes. Almost all EPROM burners support this option.

Running the program with the starting address above zero.
1. With the power disconnected populate U3 and U4 with the pre-programmed

EPROMs.
2. Insert the jumpers above U4 into the ROM position.
3. Connect the power to the board.
4. Bootstrap the board as usual.
5. Insert jumpers at CFG0, CFG1, and CGF2 to select the alternate memory map you

wish to use. (See section 5.4)
6. Select the TTY | Run menu item and type the program’s starting address at the

address field.
7. Press OK to run the program.
8. Alternately after the program is downloaded when the monitor prompt

appears you may type G(starting address) to run the program.

Running the program with the starting address zero.
1. With the power disconnected populate U3 and U4 with the pre-programmed

EPROMs.
2. Insert the jumpers above U4 into the ROM position.
3 Remove P4 on header JP10. This prevents the processor from entering the

bootstrap mode when the reset button is pressed.
4. Insert jumpers at CFG0, CFG1, and CGF2 to select the alternate memory map you

wish to use. (See section 5.4)
5. Connect the power to the board.
6. The program will start from address zero.
7. If the board is powered-up you can restart your program by pressing the reset

button.

7. PAL EQUATIONS
A PALCE16V8, and a PALCE22v10 are used. U5 is responsible for the bootstrap loader
logic, and the second U6, for the memory decode logic.

7.1 U5 Equations
;PALASM Design Description
;------------------------ Declaration Segment ------------
TITLE RMB-165 Memory Decode Logic -- RAM/EPROM
REVISION 1.0
COMPANY Rigel Corporation
DATE 05/15/95

CHIP _r165u5 PALCE16V8

;------------------------ PIN Declarations ---------------
; --- inputs ---
PIN 1 A18 COMBINATORIAL ;
PIN 2 A19 COMBINATORIAL ;
PIN 3 A20 COMBINATORIAL ;
PIN 4 A21 COMBINATORIAL ;
PIN 5 A22 COMBINATORIAL ;
PIN 6 A23 COMBINATORIAL ;
PIN 7 RSTIN_ COMBINATORIAL ;
PIN 8 RSTOUT_ COMBINATORIAL ;
PIN 9 CFG0 COMBINATORIAL ;
PIN 11 CFG1 COMBINATORIAL ;
; --- outputs ---
PIN 12 HISEG COMBINATORIAL ;
PIN 13 RSTCYC COMBINATORIAL ;
PIN 14 RSTCYC_ COMBINATORIAL ;
PIN 15 AUX0 COMBINATORIAL ;
PIN 16 AUX1 COMBINATORIAL ;
PIN 17 DUMMY COMBINATORIAL ;
PIN 18 LEDRST_ COMBINATORIAL ;
PIN 19 LEDAUX_ COMBINATORIAL ;
;------------------------- Boolean Equation Segment ------
EQUATIONS
RSTCYC = /(RSTIN_ * RSTCYC_)
RSTCYC_ = /(/RSTOUT_ * RSTCYC)

HISEG = A18 * A19 * A20 * A21 * A22 * A23
AUX0 = CFG0
AUX1 = CFG1
DUMMY = 1
LEDRST_ = RSTCYC
LEDAUX_ = RSTCYC_
;---

7.2 U6 Equations
;PALASM Design Description
; CFG0 and CFG1 select RAM and ROM banks
; CFG2 determines block sizes
;
; Memory Map with CGF2 absent
;
; jumper at low 48K high 16K
; ------------- ------- --------
; NONE RAM RAM
; CFG0 ROM RAM
; CFG1 RAM ROM
; CFG0 and CFG1 ROM ROM
;
; Memory Map with CGF2 present
;
; jumper at low 32K high 32K
; ------------- ------- --------
; NONE RAM RAM
; CFG0 ROM RAM
; CFG1 RAM ROM
; CFG0 and CFG1 ROM ROM
;
;---------------------------- Declaration Segment -----------
TITLE RMB-165 Memory Decode Logic
REVISION 1.1
COMPANY Rigel Corporation
DATE 05/15/95

CHIP _r165u6 PALCE22V10

;------------------------ PIN Declarations ---------------
; --- inputs ---
PIN 1 A0 COMBINATORIAL ;
PIN 2 A13 COMBINATORIAL ;
PIN 3 A14 COMBINATORIAL ;
PIN 4 A15 COMBINATORIAL ;
PIN 5 A16 COMBINATORIAL ;
PIN 6 A17 COMBINATORIAL ;
PIN 7 BHE_ COMBINATORIAL ;
PIN 8 MON COMBINATORIAL ;
PIN 9 CFG2 COMBINATORIAL ;

PIN 10 HISEG COMBINATORIAL ;
PIN 11 RESET COMBINATORIAL ;
PIN 13 CFG0 COMBINATORIAL ;
PIN 23 CFG1 COMBINATORIAL ;

; --- outputs ---
PIN 14 RAMSELL_ COMBINATORIAL ;
PIN 15 RAMSELH_ COMBINATORIAL ;
PIN 16 ROMSELL_ COMBINATORIAL ;
PIN 17 ROMSELH_ COMBINATORIAL ;
PIN 18 MA13 COMBINATORIAL ;
PIN 19 MA14 COMBINATORIAL ;

PIN 20 MA15 COMBINATORIAL ;
PIN 21 MA16 COMBINATORIAL ;
PIN 22 MA17 COMBINATORIAL ;

;------------------------- Boolean Equation Segment ------
EQUATIONS
RAMSELL_ = A0 + (A15+/CFG0) * (/A15+/CFG1) + (/A14 * /CFG2)
RAMSELH_ = BHE_ + (A15+/CFG0) * (/A15+/CFG1) + (/A14 * /CFG2)
ROMSELL_ = A0 + (A15+CFG0) * (/A15+CFG1) * (A14 + CFG2)
ROMSELH_ = BHE_ + (A15+CFG0) * (/A15+CFG1) * (A14 + CFG2)

MA13 = A13
MA14 = A14
MA15 = A15
MA16 = A16
MA17 = A17
;---

8. HEADERS
The RMB-165I board has three headers: the input/output header JP12 and the system
header JP11 and the extra input/output header JP13. Ports 2, 3, and 5 are available on
JP12. JP11 contains the address, data and control busses. Individual signals of these
jumpers are listed below. The tables reflect the physical orientation of the headers and the
enumeration of their individual posts. Pin 1 may be identified as the post with the square
pad on the printed circuit board.

8.1 JP11 - System Header

Signal Pins Signal
RMB-167

(JP6)
RMB-165

(JP11)
RMB-166

(JP1)
RMB-166

(JP1)
RMB-165

(JP11)
RMB-167

(JP6)
Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

D0 5 6 A0
D1 7 8 A1
D2 9 10 A2
D3 11 12 A3
D4 13 14 A4
D5 15 16 A5
D6 17 18 A6
D7 19 20 A7
D8 21 22 A8
D9 23 24 A9

D10 25 26 A10
D11 27 28 A11
D12 29 30 A12
D13 31 32 A13
D14 33 34 A14
D15 35 36 A15
RD# 37 38 A16
ALE 39 40 A17

RSTIN# 41 42 WR# WR# or WRL#
RSTOUT# 43 44 BHE#

NMI# 45 46 not used A18
A22 not used 47 48 not used A19
A21 not used 49 50 not used A20

8.2 JP12 - Input/Output Header

Signal Pins Signal
RMB-167

(JP7)
RMB-165

(JP12)
RMB-166

(JP2)
RMB-166

(JP2)
RMB-165

(JP12)
RMB-167

(JP7)
Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

P5.0 not used P5.0 5 6 P5.1 not used P5.1
P5.2 not used P5.2 7 8 P5.3 not used P5.3
P5.4 not used P5.4 9 10 P5.5 not used P5.5
P5.6 not used P5.6 11 12 P5.7 not used P5.7
P5.8 not used P5.8 13 14 P5.9 not used P5.9

VAGND not used VAGND 15 16 S1I not used
VAREF not used VAREF 17 18 S1O not used

P2.0 not used P2.0 19 20 P3.0
P2.1 not used P2.1 21 22 P3.1
P2.2 not used P2.2 23 24 P3.2
P2.3 not used P2.3 25 26 P3.3
P2.4 not used P2.4 27 28 P3.4
P2.5 not used P2.5 29 30 P3.5
P2.6 not used P2.6 31 32 P3.6
P2.7 not used P2.7 33 34 P3.7

P2.8 35 36 P3.8
P2.9 37 38 P3.9

P2.10 39 40 P3.10
P2.11 41 42 P3.11
P2.12 43 44 P3.12
P2.13 45 46 P3.13
P2.14 47 48 P3.14 not used
P2.15 49 50 P3.15

8.3 JP13 - Extra Input/Output Header of the RMB-165

Signal Pins Signal
RMB-167 RMB-165 RMB-165 RMB-167

Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

P6.0 5 6 P6.1
P6.2 7 8 P6.3
P6.4 9 10 P6.5
P6.6 11 12 P6.7

A23 not used 13 14 READY#
VAGND not used 15 16 not used
VAREF not used 17 18 not used

P5.0 not used 19 20 not used P7.0
P5.1 not used 21 22 not used P7.1
P5.2 not used 23 24 not used P7.2
P5.3 not used 25 26 not used P7.3
P5.4 not used 27 28 not used P7.4
P5.5 not used 29 30 not used P7.5
P5.6 not used 31 32 not used P7.6
P5.7 not used 33 34 not used P7.7
P5.8 not used 35 36 not used P8.0
P5.9 not used 37 38 not used P8.1

P5.10 39 40 not used P8.2
P5.11 41 42 not used P8.3
P5.12 43 44 not used P8.4
P5.13 45 46 not used P8.5
P5.14 47 48 not used P8.6
P5.15 49 50 not used P8.7

9. BOOTSTRAPPING
The RMB-165I bootstrapping is triggered by grounding P0L.4 at reset. A 32 pin header is
used to ground the bits of P0L via a resistor array with a nominal value in the range of 15K
to 33K.

Note that the GAL which controls the bootstrap load operation is also responsible for
turning on the LED. In its default implementation, the LED is lit once the RSTOUT# signal
is activated. For specific applications, the user may alter the operation of the bootstrap
logic by changing the GAL equations.

Once the bootstrap loader is invoked the serial port S0 is used to communicate with the
C165. The host must first send a 0 byte with 8 data bits, 1 stop bit and no parity bits. The
C165 responds with the byte A5h . Then the host expects 32 bytes of code to be
downloaded to internal RAM starting at address 0FA40h and run.

Since 32 bytes is not enough to initialize and configure the C165 and then download a user
program, a secondary loop is used. This loop is a short piece of code that is placed
starting at address 0FA60h, so that when the 32 bytes of primary code are executed, the
program continues with the secondary loop. The approach is described in more detail
below.

The 32 bytes downloaded are, in hexadecimal,

E6 F0 60 FA
9A B7 FE 70
A4 00 B2 FE
7E B7
B4 00 B0 FE
86 F0 BB FC
3D F6
CC 00
CC 00
CC 00
CC 00

which correspond to the following short code.

; origin is 0FA40h
mov R0, #0fa60h

W0:
jnb S0RIR, W0
movb [R0], S0RBUF
bclr S0RIR
movb S0TBUF, [R0]
cmpi1 R0, #0fcbb ; read 604 bytes
jmpr cc_NE, W0
nop
nop
nop
nop

Note that the NOP (no operation) operations are required to fill the 32 bytes, since the
bootstrap loader remains active until all 32 bytes are received. When the bootstrap loader

receives its last byte and places it in address 0FA5Fh, it makes a jump to 0FA40h and
starts executing the code. This is the short loop given above. Note that at this time the
internal RAM starting from 0FA60h does not contain any relevant code.

The short loop takes advantage of the serial port S0 which is already initialized. It waits for
a user specified number of bytes, 604 bytes in this case, and places these bytes
consecutively starting from internal RAM location 0FA60h. When the loop is done (all 604
bytes received) the program continues by executing the NOP operations, and then
executing code from 0FA60h on. Thus the 604 bytes loaded by the secondary loop are
also interpreted as code.

The user may alter the number of bytes to be loaded by changing the 21st and 22nd bytes
(BB and FC) which give the address (the low byte, followed by the high byte) of the last
byte to be read by the loop. Note that there is a practical limit to the number of bytes that
can be downloaded by this loop: the PEC source and destination pointers as well as the
SFRs which occupy addresses FDE0h and above must not be overwritten by data bytes.

Due to the powerful instruction set of the C165, a lot of functionality can be implemented
within 604 bytes of code. The 604 bytes contained in the file BTL67.DAT downloads a
minimal monitor program. This program contains an initialization routine, subroutines to
send and receive characters through the serial port, a subroutine to download code in the
Intel Hex format, and a subroutine to jump to any location within the 64K segment. The
latter two are invoked by single-letter commands.

The 604 byte-code may be broken down into four sections.

1. Initialization code to be executed after the 32-byte bootstrap
2. Code to be written starting at address 0 to be executed after the software reset.
3. The minimal monitor to be placed starting at address 8000h
4. The software reset (SRST) instruction to leave the bootstrap mode.

Sections 1 and 4 are somewhat different than sections 2 and 3. The bytes downloaded in
sections 1 and 4 are actual instructions which are executed after the 32-byte bootstrap
load is completed. Sections 2 and 3 are instructions to poke bytes into memory. More
specifically, in section 2, bytes are written to memory locations starting from address 0. In
section 3, from address 8000h. The bytes placed into memory locations starting from
address 0 is executed after the software reset instruction. This is an initialization program
which, upon completion, branches to address 8000h to execute the minimal monitor
program.

For example, the initialization code starting at address 0 begins with the two instructions

DISWDT
EINIT

whose machine instructions are (A5 5A A5 A5) and (B5 4A B5 B5),

respectively. The code within the 604-byte download block pokes these bytes starting from
address 0. That is, these instructions are placed into memory, one word at a time, as data.
The following instructions are used.

mov R1, #0A55Ah ; begin: DISWDT
mov 0, R1
mov R1, #0A5A5h
mov 2, R1

mov R1, #0B54Ah ; EINIT
mov 4, R1
mov R1, #0B5B5h
mov 6, R1

This pattern is used throughout sections 2 and 3. First the word is written to register R1.
Then the register is copied to memory. The file BTL67.DAT contains the bytes
downloaded to the RMB-165I board during bootstrapping. The file BTL.SRC contains the
source code.

The initialization routines configure the SYSCON register. The internal ROM is disabled
and the external bus is activated. Next the CSP and DPP registers are initialized. These
steps need to be completed before the EINIT instruction. Note that if the watchdog timer is
to be disabled; this too must be done before the EINIT instruction.

10. THE MONITOR PROGRAMS

10.1 Minimal Monitor
The minimal monitor is placed by the bootstrap loader starting at address 8000h. The
monitor responds to two single-letter commands ’D’ and ’G’. The ’D’ command places the
monitor in a download mode. Code in the Intel Hex format is expected. Code may be
downloaded anywhere in the first 64K segment. The ’G’ (Go) command expects 4
hexadecimal characters. These 4 characters specify an address within the first 64K
segment. A jump is performed to this address. If a user program is downloaded (using the
’D’ command), say at address 0C000h, then the GC000 command branches to the user
program. In many cases, the user program is the application program or a monitor
program, such as RMON167, and hence, the minimal monitor is no longer required. If,
however, the user program wishes to return to the minimal monitor, it should branch to
address 8000h. Note that the minimal monitor initializes the stack, so either a call or a
jump to address 8000h would work.
The minimal monitor is a loop that executes the following flowchart.

10.2 MON167 Monitor
The monitor program RMON167 allows inspecting and modifying the first 64K segment of
RMB-165I memory, configuring the ports, inputting and outputting from the general
purpose ports, downloading code in the Intel Hex format, and branching to user code.
RMON167 features are invoked by single-letter commands. RMON167 assumes a 40Mhz
system crystal. Serial port 0 is initialized to run at 9600 Baud with 8 bits of data, 1 stop bit
and no parity bits.

RMON167 is intended to be downloaded after bootstrapping the RMB-165I board.
RMON167 is placed starting at address 0C000h. The first 256 bytes are reserved for
monitor variables. The entry point to RMON167 is at address C100h. To set up
RMON167, initialize READS166 and the RMB-165I board and invoke the Bootstrap
command as explained in the previous section. From the TTY menu, select Download to
download RMON167.HEX. Branch to and execute RMON167 using the Run command
under the TTY menu. Specify address C100 since the entry point to RMON167 is at
0C000h. Note that RMON167 places a jump to C100 at the nonmaskable interrupt vector.
Thus, RMON167 may subsequently be invoked by pressing the NMI pushbutton on the
RMB-165I. RMON167 initializes the stack and resets the interrupts. Thus, even after the
NMI button is pressed, RMON167 clears the NMI interrupt by executing a dummy ’return
from interrupt’ instruction.

Alternatively, RMON167 may be placed in EPROM and invoked upon reset. The source
code for RMON167 is given on the distribution disk. RMON167 is not optimized for speed
or size, but rather for clarity and pedagogical value. The legal users are encouraged to
modify RMON167 and use portions of it in applications programs.

The single-letter commands of RMON167 are explained below.

D Download HEX file
The D command places RMON167 in a download mode. The monitor expects to receive
code in the Intel Hex format through serial port 0. The download mode is terminated when
the last line of Intel Hex code is received (when the byte count is 0).

C Port Configuration
The C command is used to configure the ports, i.e., the port direction registers DPnn. Cn
displays the current setting of DPn. Cn=mmmm writes the word mmmm to register DPn.

G Go
The user code at address xxxx is branched to by the Gxxxx command. Note that the user
program may return to RMON167 by a branching instruction to address 0C000h.
RMON167 initializes the stack, thus, either a jump or a call instruction may be used to
return to RMON167.

H Help
The H command displays a summary of available monitor commands.

M Memory
The first 64K segment of the RMB-165I memory may be inspected or modified by the M
command. The M command is also useful to poke short programs into memory.

M XXXX displays the current contents of memory address XXXX.

M XXXX=nn inserts the byte nn into memory address XXXX. When this command is used,
RMON167 displays the current contents as well as the new contents. The address XXXX
is incremented and the current contents of (XXXX+1) are displayed. Consecutive bytes
may be written starting at XXXX. The process is terminated if a carriage return or an illegal
hexadecimal digit is keyed in.

M XXXX-YYYY displays the block of memory between addresses XXXX and YYYY.

M XXXX-YYYY=nn fills the memory block XXXX to YYYY with byte nn.

P Port Data
The P command is used to read from or write to the ports. Pn displays the current value of
port n. If port n is an input port, then the value read is the current voltage levels applied to
the ports. If port n is an output port, Pn returns the current output value to port n.
Pn=mmmm sets the current value of output port n to mm.

Note that individual bits of the ports may be programmed as input or output. Thus, the
word returned by Pn gives the external voltage levels applied to the input bits and the
current values of the output bits.

W Word Memory
This command is identical to the M command, except that the memory contents are
displayed and modified as words (2 bytes). Words start at even address.

11. BILL OF MATERIALS

VALUE Part QUANTITY DESIGNATOR
22uF capacitor 5 C1, 2, 3, 4, 26

100nF capacitor 19
100uF capacitor 2 C5, 6

1nF capacitor 1 C27
4.7K gang resistor 1 R3
100 resistor 1 R5
330 resistor 3 R1, 2, 4
10K resistor 1 R6
15K gang resistor 1 R8
15K gang resistor 1 R7

1N4001 diode 1 D3
PWR/RO/AUX LED 3 D1, 2, 4

HOST DB9 female 1 P1
NMI/RESET push button 2 S4,5

VCC terminal block 1 JP6
MON/USER slide switch 1 S3

25x2 header 3 JP11, 12, 13
 rest options 16 x 2 header 1 JP10

2X2 jumper 1 JP1, JP2
1X3 jumper 3 RAM, ROM, JP8
1X5 header 1 JP9
2x3 jumper 1 CFG2/G1/G0

MAX232 RS232 driver 1 U7
GAL22V10 GAL 1 U6
GAL16V8 GAL 1 U5

62256 RAM 2 U1, 2
80165 processor 1 U9

27C256 EEPROM/EPROM 2 U3,4
40 MHz can oscillator 1 U8

12. CIRCUIT DIAGRAMS

