

Programming and Interfacing the 8051
Microcontroller in C and Assembly

Sencer Yeralan, P.E., Ph.D.
Helen Emery

Rigel Press, a Division of Rigel Corporation

 xi

PREFACE

This book is the result of a complete rewrite of a previous textbook, Programming and
Interfacing the 8051 Microcontroller, which is now out of print. Many interesting things
have happened since Intel built the first 8051 more than two decades ago, and even
more interesting things since we wrote the previous book. First, due to the
advancements in personal computers and graphical user interfaces, better software
development environments are available for embedded control. Second,
microcontrollers have become more powerful and faster as their relative prices have
dropped. Perhaps more importantly, larger memory devices are available at lower
prices. These factors now make C programming an attractive alternative. Third, with
the expansion of the internet, more information is readily available. In particular,
manufacturers’ data sheets and various hardware and software users’ manuals are
available for the downloading. This releases a textbook from the task of repeating
detailed specifications. Finally, more and more engineers, students, and hobbyists
are involved in embedded control. Almost all engineering schools now have a course
on embedded control or microcontrollers for non-electrical engineers. The concept of
embedded control has become familiar to the public. Moreover, people now expect a
product to include a “computer chip.” Unlike a few years ago, one no longer needs to
define embedded control or a microcontroller. All these changes were anticipated by
many in the field. However, the changes were not totally without surprises. Most
importantly, we did not anticipate the 8051 to be around much longer after we wrote
the previous textbook. New and more powerful microcontroller families were being
introduced. We, as well as many in the field, thought that some other microcontroller
would essentially make the 8051 architecture obsolete. Although several 8-bit
microcontrollers have successfully entered the market, the 8051 family nevertheless
continues to enjoy a very large following. In fact, when a microcontroller core needs
to be attached to a smart peripheral, such as a USB controller, or an ISA interface, the
manufacturers often opt for an 8051. There are several reasons given for the
continued use of the 8051. Many people and institutions are familiar with it, or have
legacy code still in use. Moreover, there are many good very-low-cost or free support
tools in the public. In addition, the 8051 has the most “second sources” of any 8-bit
microcontroller. An industrial design with an 8051 reduces concerns of chip
availability and cost. Virtually any conceivable peripheral is available next to an 8051
core: extra memory (ROM, RAM, FLASH, EEPROM), ADC, PWM, MAC, I2C, CAN,
USB, ARCNET, etc. Newer semiconductor manufacturing techniques have also
contributed to the success. It is anticipated that the 8051’s will soon reach the 100
MIPS mark. Improving on the original 12 clock cycles per machine cycle design,
newer chips take fewer clock cycles per machine cycle. For example, when there are
four clock cycles per machine cycle, the processor runs 3 times faster compared to

xii

the original 8051 at the same oscillator frequency. Recently, two companies have
announced 8051’s achieving one machine cycle per clock cycle.

This book uses Rigel’s Integrated Development Environment (IDE) Reads51.
Reads51 is free for students and educational institutions. Simply download Reads51
and the examples in this book from www.riglcorp.com. Support material for the book,
such as manufacturers’ data sheets for the components used in the experiments are
also available at this web site. Most of the experiments use the standard 8051.
Reads51 version 4.x includes an improved chip simulator with a virtual TTY window
and virtual ports. Many experiments may be run in the chip simulator while the user
interacts with the ports by clicking on the icons in the virtual I/O window. This is
particularly useful for students who develop their code offline. The full impact of the
experiments is achieved when actual hardware is used. The book uses Rigel’s RMB-
S development board with the 80C515 microcontroller, manufactured by Infineon
Technologies (formerly Siemens Microelectronics). The 80C515 contains more ports
for interfacing, an improved Timer 2 unit (PTRA) for Pulse-Width Modulation (PWM),
and an internal Analog-to-Digital Converter (ADC). Circuit diagrams, parts lists, and
simple firmware are given in Chapter 7 for those who would like to build their own
8051- or 80515-based board. In summary, you may,

1. Use the chip simulator given with Rigel Corporation’s Reads51 Integrated

Development Environment (IDE). The latest version of the IDE may be
downloaded from www.rigelcorp.com.

2. Build an 8051- or 80515-based microcontroller system as described in this
book and run the programs on the system,

3. Use a commercial evaluation system or an in-circuit emulator.

Since the experiments focus on interfacing the microcontroller, a good set of
laboratory test and measurement instruments is recommended. A basic voltmeter
and a logic probe will go a long way in debugging hardware. A logic probe may be
built simply be connecting an LED to a 470-ohm resistor. Laboratory studies,
especially for demanding applications, would benefit from a logic analyzer and an
oscilloscope. The Hewlett Packard / Agilent Technologies HP54645D mixed signal
storage oscilloscope was used in the development of the experiments in the book.
Such oscilloscopes are particularly suited for microcontroller circuits, since they
display both digital and analog information. The digital and analog signals may be
stored and analyzed, similar to features found in logic analyzers. They also measure
times and voltages.

The chapters follow a logical order. Both assembly language and C language
experiments are presented. Being a lower-level language, assembly is a better way
to start working with the microcontroller. With an understanding of assembly
language code, writing C code becomes relatively straightforward. Those readers

xiii

who wish to write applications in assembly language may skip sections dealing with C.
On the other hand, strictly speaking, readers who would like to write the code in C but
wish not to deal with assembly may skip sections on assembly. However, these
readers are still advised at least to read the sections on assembly language, since a
low-level understanding of the microcontroller aids in writing efficient and effective
high-level code in the long run. Those who wish to build their own 8051-based
microcontroller system are recommended to start from Chapter 1 and read the entire
book before they build the system. In our experience, such review provides a useful
general understanding, and saves time in the long run. The reader is assumed to be
familiar with digital logic (gates and flip/flops).

Chapter 1 gives the fundamental concepts of microcontrollers. It also introduces the
properties of the Intel 8051 and Siemens 80C515 microcontrollers.

Chapter 2 discusses Intel's MCS-51 assembly language, which is used by all
members of this microcontroller family. The instruction set is partitioned into three
logical sets: data transfer instructions, data manipulation instructions, and program
flow control instructions. Illustrative code is given for each instruction. The examples
focus on a single machine instruction at a time. A brief overview of the ever-
expanding family of 8051-based microcontrollers concludes the chapter.

Chapter 3 builds on the basic understanding of assembly language by introducing
commonly used techniques. These techniques combine several different types of
instructions to accomplish a meaningful task in an effective manner. Many of the
examples given are from the monitor programs used by Rigel’s 8051 family boards.
These techniques include data manipulation and transfer, look-up tables, branching,
string manipulation, software timing routines, and arithmetic routines. The examples
are not optimized for speed or length, as it is typically done in application notes.
Attention here is given to code readability and ease of understanding. A structured
programming approach is taken. Tasks that can be identified as independent logical
units are implemented as individual subroutines. This makes the programs more
hierarchical and easier to dissect and comprehend.

Chapter 4 introduces hardware experiments using assembly language. These
experiments may be studied with any evaluation system, provided that a few push
buttons, LEDs, seven-segment displays, and a speaker are available. In this book,
such interface devices are called User Input/Output Devices (UIOD). A breadboard
for prototyping is recommended. Experiments in Chapter 4 deal with the on-chip
peripherals. Each experiment focuses on a separate peripheral. Digital input and
output operations, counter and timer operations, interrupt routines, and analog-to-
digital conversion are presented.

xiv

Chapter 5 introduces the C programming language. The hardware experiments given
in Chapter 4 are written in C. Comparing C code to assembly code is an instructive
effort in and of itself.

Chapter 6 extends the applications to external circuitry. Examples combine many on-
chip facilities to accomplish useful tasks. The examples use both C and assembly
language. The examples build upon many of the techniques and routines presented
in Chapters 3, 4, and 5.

Chapter 7 gives all the information necessary to build an 8051-based microcontroller
system. Circuit diagrams and a bill of materials are given. The listing of a skeletal
monitor, MINMON is provided along with instructions to extend the monitor. All
software listed is available on Rigel’s web site www.rigelcorp.com.

Chapter 8 summarizes the steps involved in software development. It suggests
further experiments and projects.

Appendix A gives a very brief overview of the Reads51 IDE. Up-to-date information
may be found in the various tutorials, quick start sheets and user’s guides available on
Rigel’s web site. Appendix B reviews the C programming language. Appendix B is a
good place to start for those who are new to C. The material is not intended to be an
exhaustive study of the language. The reader is referred to the numerous textbooks
on the subject for in-depth information. Appendix C presents the number systems
used in this textbook. Binary, hexadecimal, binary-coded decimal, and two’s
complement formats are discussed. Appendix D is a compilation of information
sources for the 8051. Manufacturers of chips, boards, and test equipment as well as
parts suppliers and software companies are listed.

As mentioned, the example code given is not optimized for speed or length. This
book does not intend to replace the manufacturer's data books or application notes. It
is intended as a comprehensive introductory book. The authors think that the reader
may attempt almost any applications development after reading this book.
Experienced programmers or persons familiar with microcontrollers in general, but not
well acquainted with the 8051 family of microcontrollers may use the book as a
cookbook of ideas, example code, and applications circuitry.

The subject of embedded control and microcontrollers is a very rapidly changing field.
Even mature architectures like the 8051 display a flurry of activity as new members of
the family are introduced and new and more powerful development tools are made
available. Much information and many resources are available on the web. We
strongly suggest that the reader closely follow the field by periodically checking the
relevant web sites. Appendix D lists manufacturers and information sources as of
November 2000.

xv

Perhaps the most significant contribution of this textbook is its hands-on approach to
the many experiments. Simply implementing the experiments would give an
otherwise uninitiated reader a good general feel for embedded control. After many
years of developing industrial embedded control systems, we still enjoy constructing
experiments for an educational audience. We hope you find it enjoyable and
informative. We were surprised to find out how many of our readers actually built their
own system from scratch. Hearing from you has always been our greatest
satisfaction. Please drop us a line.

Sencer Yeralan and Helen Emery
Gainesville, Florida
October 2000

