
READS166 Users Guide

Version 3.1x

February 1999

RIGEL CORPORATION
PO Box 90040

Gainesville, Florida 32607
(352) 373-4629

FAX (352) 373-1786
www.rigelcorp.com
tech@rigelcorp.com

© 1994-1999 by Rigel Corporation.
Legal Notice:
All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of Rigel Corporation.
The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its compatibles. IBM
PC is a trademark of International Business Machines, Inc. MS Windows is a trademark of Microsoft, Inc.
Information in this document is provided solely to enable use of Rigel products. Rigel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Rigel products except as
provide in RIGEL’s Customer Agreement for such products.
Rigel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors,
which may appear in this document, nor does it make a commitment to update the information contained herein.
Rigel retains the right to make changes to these specifications at any time without notice.
Contact Rigel Corporation or your Distributor to obtain the latest specifications before placing your order.
Our Policy:
We attempt to up date all software, software manuals, and hardware manuals every 3-6 months. If there is a
problem with the software or documentation it is corrected immediately. The newest version is then put on our
home page (www.rigelcorp.com) with the date noted. Documentation is coded with version number and a date.
The version number is the version of the board/software (V3.1), and the date (Feb1999) refers to the last date
the document was written.
We welcome any and all comments about our products.

WARRANTY
RIGEL CORPORATION- CUSTOMER AGREEMENT
1. READS 166 (referred to as simply READS) License. The READS being purchased is hereby licensed to you on a

non-exclusive basis for use in only one computer system and shall remain the property of Rigel Corporation for
purposes of utilization and resale. You acknowledge you may not duplicate the READS for use in additional
computers, nor may you modify, disassemble, reverse engineer, translate, sub-license, rent or transfer electronically
READS from one computer to another, or make it available through a timesharing service or network of computers.
Rigel Corporation maintains all proprietary rights in and to READS for purposes of sale and resale or license and re-
license.

BY BREAKING THE SEAL, OPENING THE READS PACKAGE, OR LOADING IT INTO YOUR PC, YOU
INDICATE YOUR ACCEPTANCE OF THIS LICENSE AGREEMENT, AS WELL AS ALL OTHER PROVISIONS
CONTAINED HEREIN.

2. Return Policy. This return policy applies only if you purchased the READS166 Software directly from Rigel
Corporation. If purchased form a distributor please contact them for their return policy.
If you are not satisfied with the items purchased, prior to usage, you may return them to Rigel Corporation within
thirty (30) days of your receipt of same and receive a full refund from Rigel Corporation. You will be responsible for
shipping costs. Please call (352) 373-4629 prior to shipping. A refund will not be given if the READS166 Disk
package has been opened.

3. Limited Warranty. Rigel Corporation warrants, for a period of sixty (60) days from your receipt, that READS disks,
or CD ROM shall be free of substantial errors or defects in material and workmanship which will materially interfere
with the proper operation of the items purchased. If you believe such an error or defect exists, please call Rigel
Corporation at (352) 373-4629 to see whether such error or defect may be corrected, prior to returning items to Rigel
Corporation. Rigel Corporation will repair or replace, at its sole discretion, any defective items, at no cost to you, and
the foregoing shall constitute your sole and exclusive remedy in the event of any defects in material or workmanship.

THE LIMITED WARRANTIES SET FORTH HEREIN ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

YOU ASSUME ALL RISKS AND LIABILITY FROM OPERATION OF ITEMS PURCHASED AND RIGEL
CORPORATION SHALL IN NO EVENT BE LIABLE FOR DAMAGES CAUSED BY USE OR PERFORMANCE, FOR
LOSS PROFITS, PERSONAL INJURY OR FOR ANY OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES.
RIGEL CORPORATION'S LIABILITY SHALL NOT EXCEED THE COST OF REPAIR OR REPLACEMENT OF
DEFECTIVE ITEMS.

IF THE FOREGOING LIMITATIONS ON LIABILITY ARE UNACCEPTABLE TO YOU, YOU SHOULD RETURN ALL
ITEMS PURCHASED TO YOUR SUPPLIER.

4. Governing Law. This agreement and all rights of the respective parties shall be governed by the laws of the State
of Florida.

Table of Contents
1.0 INTRODUCTION... 1

2.0 SOFTWARE SETUP... 2

2.1 SYSTEM REQUIREMENTS ... 2
2.2 SOFTWARE INSTALLATION ... 2
2.3 START UP .. 2
2.4 SERIAL NUMBER... 2

2.4.1 Demo Version ... 2
2.4.2 Full Version... 2

CONFIGURING READS166.. 2
2.6 INITIATING HOST-TO-BOARD COMMUNICATIONS... 3
2.7 BOOTSTRAPPING.. 3
2.7 VERIFYING THAT THE MONITOR IS LOADED .. 4

3.0 READS166 V3.10 CONCEPTS ... 5

3.1 PROJECT... 5
3.1.1 Executable Projects .. 5
3.1.2 Archive Projects.. 5

3.2 MODULE.. 5

4.0 TUTORIAL 1 -- EXECUTABLE PROJECTS... 6

4.1 CREATING AN EXECUTABLE PROJECT ... 6
4.2 ADDING A MODULE ... 7
4.3 BUILDING THE PROJECT .. 7
4.4 RUNNING THE PROJECT .. 9

5.0 TUTORIAL 2 -- DEBUGGING A PROJECT.. 10

5.1 SELECTING THE DEBUG MODE ... 10
5.2 ADDING BREAKPOINTS AND SINGLESTEPPING .. 10
5.3 WATCHING VARIABLES.. 11

6.0 TUTORIAL 3 -- ARCHIVE PROJECTS ... 12

6.1 CREATING AN ARCHIVE PROJECT ... 12
6.2 IMPORTING/EXPORTING MODULES ... 12

7.0 CODE WIZARDS .. 13

7.1 INTRODUCTION... 13
7.2 USING THE CODE WIZARDS ... 13

8.0 RA66 -- THE READS166 ASSEMBLER.. 15

8.1 OVERVIEW OF RA66... 15
8.2 PSEUDO OPERATIONS .. 15
8.3 TYPES AND TYPECASTING ... 15
8.4 COMPILER DIRECTIVES ... 17
8.5 CONSTANTS .. 17
8.6 EXPRESSIONS .. 18
8.7 FUNCTIONS ... 18
8.8 ADDRESSING MODES .. 19
8.9 ASSEMBLY ERRORS .. 19

8.9.1 Attempt to Redefine Symbol or Label.. 19
8.9.2 Incorrect Symbol or Label ... 19
8.9.3 Incorrect Operand ... 19
8.9.4 Attempt to Branch Out of Bounds.. 19
8.9.5 Unresolved Operand(s) ... 19

8.9.6 Undecodable Line ... 19
8.9.7 Operand(s) Out of Range.. 20
8.9.8 Incorrect Operand Types... 20
8.9.9 Incorrect Register Use... 20
8.9.10 Incorrect Constant... 20
8.9.11 Odd or Out-of-Range Address... 20
8.9.12 Undefined Symbol... 20
8.9.13 Incorrect Processor ... 20

9.0 THE C166 INSTRUCTION SET .. 21

9.1 OVERVIEW .. 21
9.2 ARITHMETIC INSTRUCTIONS ... 21

9.2.1 Addition... 21
9.2.2 Subtraction.. 22
9.2.3 Multiplication... 23
9.2.4 Division... 23
9.2.5 Complement ... 23
9.2.6 Negation .. 23

9.3 LOGIC INSTRUCTIONS ... 23
9.3.1 AND Operations.. 23
9.3.2 OR Operations.. 24
9.3.3 EXCLUSIVE OR Operations ... 24

9.4 BOOLEAN (BIT-ORIENTED) INSTRUCTIONS .. 25
9.5 COMPARE INSTRUCTIONS .. 25
9.6 LOOP CONTROL INSTRUCTIONS ... 25
9.7 PRIORITIZATION ... 26
9.8 SHIFT AND ROTATE INSTRUCTIONS... 26
9.9 DATA TRANSFER INSTRUCTIONS .. 27
9.10 BRANCHING TRANSFER INSTRUCTIONS ... 28
9.11 SYSTEM STACK INSTRUCTIONS .. 29
9.12 SYSTEM CONTROL INSTRUCTIONS.. 30
9.13 MISCELLANEOUS INSTRUCTIONS .. 30

10.0 RC66 -- THE READS166 C COMPILER.. 31

10.1 NATIVE 32-BIT COMPILER ... 31
10.2 ONE-STEP COMPILATION .. 31
10.3 SPECIAL FUNCTION REGISTERS ... 31
10.4 INTERRUPT SERVICE ROUTINES ... 32
10.5 WRITING INTERRUPT SERVICE ROUTINES (ISRS)... 32
10.6 MIXING C WITH ASSEMBLY CODE ... 33
10.7 THE DEBUGGER ... 34

11.0 A BRIEF REVIEW OF C .. 35

11.1 C LANGUAGE PHILOSOPHY.. 35
11.1.1 Ingredients of a C Program ... 35
11.1.2 Code Appearance and Style.. 36

11.2 FUNCTIONS ... 36
11.3 VARIABLES .. 36

11.3.1 Scalars.. 36
11.3.2 Pointers .. 37
11.3.3 Arrays ... 38

11.4 CONSTANTS .. 38
11.4.1 Compiler Directives... 38

11.5 STATEMENTS ... 38
11.5.1 Compound Statements.. 38
11.5.2 Expressions .. 39
11.5.3 Conditions... 40

11.5.4 Iteration Statements.. 40
11.5.5 Selection Statements .. 43

11.6 COMMENTS.. 44
11.7 STANDARD (RUN TIME) LIBRARIES ... 45
11.8 REFERENCES... 45

12.0 RC66 SOFTWARE/HARDWARE EXPERIMENTS.. 46

12.1 THE HARDWARE... 46
12.2 THE SOFTWARE ... 46
12.3 SIMPLE INPUT/OUTPUT EXPERIMENTS .. 46

12.3.1 Using Single-Bit Inputs and Outputs .. 46
12.3.2 Polled Analog-to-Digital Conversion.. 47
12.3.3 Simple LCD Operation .. 47
12.3.4 Combining Modules: ADC with LCD.. 47
12.3.5 Stepper Motor Control... 48

12.4 INTERRUPTS AND REAL-TIME PROGRAMMING ARCHITECTURES ... 49
12.4.1 Servicing Simple Interrupt Signals .. 49
12.4.2 Accurate Timing Routines Using Timer Interrupts.. 51
12.4.3 Accurate Stepper Motor Speed Control Using Timer Interrupts.. 53
12.4.4 Interrupt-Driven Analog-to-Digital Conversion ... 54

APPENDICES ... 1

APPENDIX A: READS166 3.1 UPDATES ... I

A.1 PROJECT FORMATS ... I

A.2 HARDWARE CONFIGURATION.. I

A.3 USER CONFIGURABLE SYNTAX HIGHLIGHTING... I

A.4 MATCHING PARENTHESES .. I

A.5 SEARCH ACROSS FILES ... I

A.6 DRAG-AND-DROP .. I

A.7 PROJECT NOTES... I

A.8 VARIABLE AND SFR WATCHES ... I

A.9 FLOATING-POINT NUMBERS.. I

A.10 LONG INTEGERS ... II

A.11 MAC INSTRUCTIONS ... II

APPENDIX B: READS166 MAIN MENU COMMANDS.. III

B.1 PROJECT...III
B.2 MODULE..III
B.3 COMPILE .. IV

B.4 VIEW ... IV

B.5 TOOLS .. V

B.5.1 TTY.. vi
B.5.2 Compiler/ Assembler.. vi
B.5.3 Project ... vi
B.5.4 Compile Errors... vi
B.5.5 Hardware Configuration ... vi

B.6 OPTIONS .. VI

B.7 WINDOW ..VII

B.8 HELP ...VII

APPENDIX C: READS EDITOR I

C.1 READS166 EDITOR OVERVIEW I

C.2 FILE MENU I

C.2.1 Edit Menu .. i
C.2.2 View... i
C.2.3 Window... ii

C.2.4 Navigate ... ii
C.3 MISCELLANEOUS EDIT AND NAVIGATION KEYS ... II

C.4 HIGHLIGHTING TEXT ... II

C.4.1 Highlighting the Current Word ... ii
C.4.2 Highlighting a Block of Characters ... iii
C.4.3 Highlighting a Block of Lines .. iii

1.0 INTRODUCTION
READS166, version 3.1x, is Rigel Corporation’s Integrated Development Environment for the C166/ST10 16-bit
processors. READS166 includes an editor, a host-to-board communications system, an assembler, and a C
compiler. READS166 is completely rewritten in native 32-bit code to run on Windows95, Windows98, and
WindowsNT. READS166 includes a sophisticated project management system to simplify code reusability and
version control. The C compiler is rewritten to support a full debugger. The debugger allows you to step through
your code with breakpoints and variable watches as the compiled code runs on the target board, similar to the
operation of an in-circuit emulator.
RMON166 - The READS166 monitor program
RMON 166 is downloaded after bootstrapping (or it may be placed into ROM) and supports basic memory and
port functions. RMON166 allows downloading and running applications programs. The complete source code
for user modifications or upgrades is included on disk.
Ra66 - The READS166 Assembler
Ra66 is an assembler for the C166 family of controllers. It is a multi-pass absolute assembler that generates
HEX code directly from assembly source code.
Rc66 - The READS166 C Compiler
Rc66 is a C Compiler for the C166 family of processors. It compiles code for the tiny memory model, which fully
resides in the first segment of memory. Rc66 is designed as a low-cost C compiler which provides a quick
development cycle for simpler applications which do not need more than 64K of code, or the use of standard C
libraries. Rc66 implements a subset of ANSI C. Rc66 works in conjunction with Ra66: first an assembly
language program is generated from the C source then a HEX file is created.

The READS166 software has the following distinctive features:

• Project management for organized software development
• Archive storage for source code modules
• Multiple project management with drag and drop module transfers
• Enhanced graphical user interface for easy monitoring
• Stand alone compiler and editor applications connected to READS166 in a client/server fashion
• Drag and drop code development
• Mixed mode projects (C and assembler)
• Code wizard generators for C and Assembly
• ST10F262/ST10F272 Multiply-Accumulate (MAC) instructions

2

2.0 SOFTWARE SETUP

2.1 System Requirements
READS166 is designed to work with an IBM PC or compatible, 486 or better, running Windows 95, Windows 98
or Windows NT. READS166 supports the bootstrap loader feature and downloads a minimal monitor during
bootstrapping. The source code and description of the bootstrap program are included in the documentation.

2.2 Software Installation
Place the CD-ROM in your drive. Go to the Rigel Products | 166 Software | READS166 | READS310 .exe
program. Click on the exe file and the program will begin to load in your system.
Follow the standard install directions answering the questions with the appropriate answers.

2.3 Start up

1. Connect your RIGEL board to the PC host via a serial cable.
2. Connect the board to a well-regulated 5-volt power supply.
3. Check to make sure the correct jumpers are in place.
4. Run the READS166 host driver by selecting Start | Programs | READS166V3.10. You may also start

READS166 by double clicking on the READS166 short cut icon if installed.

2.4 Serial Number

2.4.1 Demo Version
When you run the READS software a pop-up registration box will open asking for your serial and customer

numbers. If you are using the demo version of the software you
may press CANCEL, the box will disappear, and the About Box
will appear. Press the OK button in the About Box and the
software will run in the Demo mode. The demo mode limits the
size of the files you can compile to about 8K.

2.4.2 Full Version
When you run the READS software for the first time a pop-up
registration box will open asking for your serial and customer
included with the printed documentation. Insert these numbers in
the correct boxes, press OK and then press OK in the About Box.

Your software is registered and ready to use. numbers. Both numbers will be on a registration sheet and

2.5 Configuring READS166
Please note that there are multiple ways to
perform every basic operation available in the
READS166 Software. Below are three different
ways to select the board and processor you will
be writing code for.

1. Using the Tools | Hardware
Configuration menu command choose
the name of the board you are using from
the board list that appears.

2. Or you may open a project, and then
from the Projects | Project Build
Options | Compile Options | or |
Assembly Options | select the processor
you are using from the list.

3. Or from the Options |Hardware Options

3

| you may select the board you will be using.

With an open project, the C Build Options and Assembly
Options also allow you to automatically select from a variety of choices used when writing programs.

2.6 Initiating Host-to-Board Communications
Initiating communications between the PC and board may be done several different ways.
Open the TTY window using the Tools | TTY
menu command,

 (or click on the smiley face.)
Select the communication port parameters using
the Tools | TTY | TTY Options menu command.

(Or select the options button in the TTY
window.) You will need to select the COM port you
are using, and the baud rate. You may also select
the TTY Options from the Options | TTY Options |
menu command.

2.7 Bootstrapping
In the default configuration, all monitor programs are downloaded to the boards after the boards are
bootstrapped. That is, there is no ROM on the
board that is executed upon reset. Bootstrapping
loads a small monitor, called MinMon, which in
turn loads a larger monitor RMON16x. Once the
monitor program is loaded, the monitor commands
are available to the user.

1. Press the reset button on the board.
2. From the menu in the TTY window select

TTY | Bootstrap and Download Monitor.
The board will now bootstrap and
download the monitor program.

4

3. Or select the boot in the TTY window.

You may observe the bootstrap progress in the status line of the TTY window. When bootstrapping is completed,
the READS166 monitor prompt appears in the TTY window.

2.7 Verifying that the Monitor is Loaded
Make sure the TTY window is active, clicking the mouse inside the TTY window to activate it if necessary. Then
type the letter ‘H’ (case insensitive) to verify that the monitor program is responding. The ‘H’ command displays
the available single-letter commands the monitor will recognize.

The READS monitors use single-letter commands to execute basic functions. Port configurations and data, as
well as memory inspection and modifications may be accomplished by the monitor. Most of the single-letter
commands are followed by 4 hexadecimal digit addresses or 2 hexadecimal digit data bytes. The following is a
list of the commands.

R E A D S C O M M A N D S
--
C nn read port nn Configuration (DPnn)
C nn=mmmm set port nn Configuration (DPnn=mmmm)
D Download HEX file
G XXXX Go, execute code at XXXX
H Help, display this list
M XXXX Memory, contents of XXXX
M XXXX=nn Memory, change contents of XXXX to nn
M XXXX-YYYY=nn Memory, change block XXXX-YYYY to nn
P nn read Port nn (Pnn)
P nn=mmmm write to Port nn (Pnn=mmmm)

W XXXX Word memory, contents of XXXX
W XXXX=mmmm Word memory, change contents of XXXX to mmmm
W XXXX-YYYY=mmmm Word memory, change block XXXX-YYYY to mmmm

5

3.0 READS166 V3.10 CONCEPTS
READS166 introduces a project-oriented code development and management system. The concepts are
defined below.

3.1 Project
A project is a collection of files managed together. Each file in a project corresponds to a code module. All
projects are kept in their individual subdirectories. You may copy or save projects as a single entity. When
saved under a different name, a new subdirectory is created and all components of the project are duplicated in
the new subdirectory.

By using the long names provided by the 32-bit Windows operating systems, you may use this feature to keep
different versions of your software in a controlled manner. For example, the project “Motor Control 07-20-1997”
may be saved under the name “Motor Control 07-25-1997” as new features are added. This way, if needed, you
may revert to an older version.

A project may either be an “executable project” or an “archive project.”

3.1.1 Executable Projects
Executable projects are meant to be compiled into code that is eventually run on the target system. Components
of an executable project are the code modules containing subroutines or functions, which make up the entire
program.

3.1.2 Archive Projects
Archive projects are never compiled. They are intended to facilitate code reusability by organizing and keeping
code modules together. An archive project acts as a repository that you may add modules to, or copy modules
from. Executable projects can be quickly constructed using already written and debugged modules from an
archive project.

3.2 Module
A module is a single file that belongs to a project. Typically modules are either assembly language subroutines
or C language functions. You may copy modules from one project to another, or share modules in different
projects. For example, you may copy a previously developed module from an archive project to an executable
project by simply dragging its icon from one project window to the other. By using existing or previously
developed and debugged modules, you may significantly improve code reusability, much in the same manner as
libraries. Reusing modules differs from using library functions of existing routines in that modules are kept in
source form rather than object form.

6

4.0 TUTORIAL 1 -- EXECUTABLE PROJECTS
A project is a collection of code modules that are grouped together. READS166 uses two different kinds of
projects, executable projects and archive projects. An executable project is a collection of modules which are
compiled together to form one executable program. An archive project is a collection of modules that are
grouped together to make retrieval from storage easier.

We will first create an executable project. We will explain creating archive projects in a later section.

4.1 Creating an Executable Project

1. Select Project | New Project | Executable Project

2. A New Executable Project box will open up.

3. In the Name box type Tutor01. You may also browse the available selections by clicking on the … icon

and looking in the work directory. Tutor01 is already in the work directory.

4. Click OK

5. A project window box will open which shows TUTOR01.RPJ represented as the root of a tree. Next we

will add a module to it.

7

4.2 Adding a Module
A module is a block of code that is saved in a single source file. To add a module to the executable project
TUTOR01.RPJ, make sure that the project window is open and double click on TUTOR01.RPJ. If the project
window is not open, select Project | Open Project | Executable Project and double click on TUTOR01.RPJ.
Now, you can add a module.

1. Select Module | Add Module. A New Code Module window will appear.

2. Type AtoZ.c in the Filename box, click on the … icon and select the AtoZ.C module from the list.

3. In the Description box type Contains a function to print a character

4. Click OK

ATOZ.C has been added. It appears as a branch of the project TUTOR1.RPJ. If you move the mouse over
ATOZ.C you will see its description in the status bar. This operation makes TUTOR1.RPJ a C project.

The language box in the New Code Module window shows that the module will be in C. The language was
automatically selected when you typed in AtoZ with the extension .c. If you type in the same module name
AtoZ with the extension .asm the language box will automatically select the language to be assembly.

4.3 Building the Project
1. Double click on the ATOZ.C module. A READS Editor box with the program opens up.

2. Click on the right mouse button and select Build from the sub-menu items displayed.

8

3. A READS Error Dialog box will open up which will report a syntax error in line 15.

4. Line 15 will be highlighted in the READS Editor box.

5. Correct the highlighted syntax error by removing the space between the i and the nt.

6. Notice in the project window that an alarm clock appears next to the open module ATOZ.C. This symbol

shows the module has been modified but not saved. If you click on the alarm clock the file will be saved.

File Modified But Not Saved File Saved

7. Right click and select Build in the READS editor box again.

8. A Build box will appear which shows the ATOZ.C file was modified. The Save modified files and build

option is already selected.

9. Press OK at the Build dialog. Notice the alarm clock next to the to the open module ATOZ.C has

disappeared, indicating the module was saved.

9

TUTOR01.HEX has just been created and it is ready to download and run.

4.4 Running the Project
Running the project TUTOR01.RPJ requires you to switch to the Run / Debug mode. In Run / Debug mode
TUTOR01.HEX is automatically downloaded to the board. Make sure that one of the serial ports on your
computer is connected the board and correct port parameters are entered in Options | TTY options.

1. Click the Run / Debug mode on the toolbar.

2. If the board is not already bootstrapped, a message box will appear asking for permission to bootstrap

the board. Press the RESET button on the board and click Yes.

3. The TTY window will open and the board will be bootstrapped and the monitor program and Tutor01

project will be downloaded to the board.

4. When the program has finished downloading to the board the monitor prompt will appear in the TTY

window,

5. Select the Compile | Run option. The program will then run on the board.

6. A string of characters from A to Z will appear in the TTY window.

7. The TTY window will indicate when the program has finished running by returning the monitor prompt.

10

5.0 TUTORIAL 2 -- DEBUGGING A PROJECT
To debug the executable project TUTOR1.RPJ, the debug option must be selected before the project is built and
downloaded to the board. To select the debug option follow these steps.

5.1 Selecting the Debug Mode

1. To select the debug mode, first make sure that the project is open. If not, select Project | Open Project
| Executable Project and double click TUTOR01.RPJ.

2. Select the Build mode from the toolbar.

3. Right click on the TUTOR01.RPJ, and click on

the Options | Compile options. (You can also
make this selection using the main menu and
selecting the Project | Project Build Options |
Compile Options.)

4. A C Compiler Options box will appear.

5. Select the Generate tab

6. Check the Debug option

7. Click OK

8. Select Tutor01.rpj by clicking on it. Then right

click and select Build from the list. The project
will be compiled and ready to run.

9. Select the Run | Debug mode from the toolbar.

TUTOR01.HEX is downloaded to the board and ready to debug.

5.2 Adding Breakpoints and Singlestepping

1. Double click the module ATOZ.C to open the READS Editor box.

2. In the editor go to the line where SendChar(nC) is written and set the cursor to point to this line.

3. Press F5, to set a breakpoint at this line. The line SendChar(nC) turns blue indicating that a breakpoint

has been set.

4. Press Ctrl F8. The program will run until it reaches the breakpoint

5. Press F8 to start singlestepping through the program.

6. Press F8 again, the character A has been printed in the TTY window.

7. Press Ctrl F8 again. The program will run until it reaches the breakpoint.

11

8. Continue to press Ctrl F8. Each time you will stop at the breakpoint and a new letter will be added in the
TTY window.

9. Singlestep to the line where you have set the breakpoint and press F5 to clear the breakpoint.

10. Press Ctrl F8 to run the program until it finishes or press Ctrl F2 to reset

5.3 Watching Variables
READS166 allows the user to watch the variables as the program is debugged.

1. Select View | Watches or the
button from the tool bar.

2. Select the Globals tab in the Watches window. You will see all the variables including the formal
parameters

3. Press F8 to start singlestepping

12

6.0 TUTORIAL 3 -- ARCHIVE PROJECTS
Archive projects are intended to facilitate code reusability by organizing and keeping code modules together. An
archive project acts as a repository that you may add modules to, or copy modules from. Executable projects
can be quickly constructed using already written and debugged modules from an archive project.

6.1 Creating an Archive Project
An archive project is used to store source code that may then be used for other projects. READS166 uses the
Drag and Drop method to of moving modules from place to place. To create an archive project:

1. Select Project | New Project | Archive Project

2. Type Archive in the Name box

3. Click OK

Now you will see the project window ARCHIVE.RAR represented as the root of a tree.

6.2 Importing/Exporting Modules

1. Open the executable project TUTOR1.RPJ by selecting Project | Open Project | Executable Project
and double clicking TUTOR1.RPJ

2. Open the archive project ARCHIVE.RAR by selecting Project | Open Project | Archive Project and

double clicking ARCHIVE.RAR

3. Click on the module ATOZ.C and hold the mouse button down while you are dragging toward

ARCHIVE.RAR. When the archive project name is highlighted release the mouse button.

4. Click OK meaning that you want to make duplicate of ATOZ.C under the archive directory.

You’ve created your own archive file containing the module AtoZ.C. You may add as many modules to an
archive project as you want. Usually the modules you will want to add are tested and debugged modules that
you may want to use for other projects. READS166 includes many of the more common modules in C and
Assembly for the A/D routines, timers, counters and so on.

For more on building projects and writing your own programs see the tutorial in the READS166 on-line HELP.

13

7.0 CODE WIZARDS

7.1 Introduction
Code generators are a recent effort in the quest for code reusability. Code generators present a good approach
to create specific functions for user-specified operating modes. The READS166 software currently has three
code generators or wizards available. The three code wizards are for ADC, software timers, and state machines.
Rigel will continue to add code wizards to the software and new wizards may be downloaded from the web site,
as they become available.

With the new READS166 environment the end user has the option of writing their own code wizards. When a C
code wizard is dragged-and-dropped into a project, the integrated development environment (IDE) calls the
Reads166 code wizard. This wizard has a “Setup” button that allows users to insert other code generators into
the existing list. For a custom code generator to be recognized, it must be written as a Windows Dynamic Link
Library (DLL). There is article on the Rigel web site, which explains and gives an example of how to write your
own code wizards.

7.2 Using the Code Wizards
Code wizards may be used in any open project to speed code development. Currently three code wizards are
available in the READS166 software. The wizards will generate code for ADC, software timers, and state
machines.

1. To activate a code wizard an executable project must be open.

2. Select the code wizard button on the tool bar. A code wizard window will open below the
current project.

3. Click on the C Wizard and drag it into your current project. A C wizard box will open which allows you to
select what kind of module you’d like to add to your project.

14

5. Select the module you want and another window will open which allows you to input your choices for
generating the code.

6. Once you’ve inputted your choices press
okay and a new module will be added to
your project.

15

8.0 Ra66 -- THE READS166 ASSEMBLER

8.1 Overview of Ra66
Ra66 is a cross assembler for the C166 family of microcontrollers. It is intended to be used by the hardware and
software products available from Rigel Corporation. Ra66 is a two-pass assembler. Forward references are
resolved during the second pass. The second pass is used only when necessary. If no forward references are
used, Ra66 completes assembly in a single pass.

8.2 Pseudo Operations
There are nine pseudo-operations (pseudo-ops) recognized by Ra66. These are DB (define byte), DW (define
word), DS (define segment of bytes), DSW (define a segment of words), EQU, DEFR, DEFB, DEFA, and ORG
(origin) pseudo-operations.

8.3 Types and Typecasting
Types are properties of the operands. Strictly speaking, the assembly language of C166 family of
microcontrollers restricts the use of certain types of operands in certain instructions. As a design philosophy,
Ra66 does not enforce strict type checking. Strict type checking has advantages in writing high-level language
compilers which generate assembly code. Type checking, however, may become somewhat awkward when
writing small assembly routines by hand. For example, Ra66 with only a few exceptions allows the use of
constants defined by EQU pseudo operations in all instructions.

Perhaps the most important type designation is the size of data or memory: BYTE or WORD. Byte and word
operations are performed by different instructions. For example, AND is a word operation while ANDB is its byte-
wise counterpart. Since the type of operand (byte or word) is implied by the instruction, the type of the operands
may be overlooked, and the operation may be performed assuming the operands are of the type implied by the
instructions.

There are two other operand types besides BYTE and WORD, namely BIT and BITWORD. The latter is a word
of the bit addressable memory. Similarly, constants have types that indicate their size in terms of the number of
bits. DATA3, DATA4, DATA8, and DATA16 are the allowed types of constants. Finally, pointers to code are
classified as SHORT, NEAR, and FAR. SHORT is used when the code is within -127 to 128 words of the current
address. All conditional relative jumps assume that the operand is a memory address of type SHORT. NEAR
pointers may be located anywhere within the current 64K segment. FAR pointers are used with inter-segment
jumps and calls. In addition, the keyword PTR may be used in conjunction with types BYTE and WORD.

General operand types: BIT BYTE BITWORD WORD
Constant types: DATA3 DATA4 DATA8 DATA16
Pointer types: NEAR FAR SHORT

Typecasting refers to the explicit naming of the operand types. Consider, for example, the constant value being
used as a pointer to code.

value EQU 1234h
calla cc_UC, NEAR 1234h

The absolute call instruction expects an operand of type NEAR. However, value is defined by an EQU pseudo
operation. By default, value is a constant of type DATA16. The instruction above explicitly typecasts value from
type DATA16 to NEAR. As stated, Ra66 is often very forgiving and does not generate an error for such type
mismatches. In certain cases, especially when it leads to ambiguities, explicit typecasting may be required.

Next, consider the instruction,

movb RL0, 1234h

16

which moves a single byte at memory location 1234h to register RL0. The second operand is the address of a
byte. However, as such, the assembler reads 1234h as a simple constant of type DATA16. A strictly type-
checking assembler would require the typecasting 1234h to a byte address as below.

movb RL0, BYTE PTR 1234h

Again, Ra66 allows typecasting but does not enforce it as long as the type of an operand is implied by the
instruction.

The ORG pseudo-op sets the location counter to the specified value. The location counter is the current
address. The EVEN compiler directive inserts a single byte if the current location counter is an odd number.
This assures that the next instruction starts at an even address.

DB, DW, DS, and DSW allocate up to 255 bytes of memory. The defined block of data may optionally be
initialized with the DS and DSW. The allocated memory block is placed at the current location counter. The
ORG compiler directive should be used if the memory block is to be placed at a specific address. Labels
preceding the DB, DW, DS, or DSW pseudo-ops provide a convenient means to address the data bytes or
words.

The syntax for each pseudo-op is illustrated by the examples below.

DATA1:
db 0,'A',2+3 ; sets aside 3 bytes at the current address.

; This address may be referred to by the label
; DATA1. The bytes are initialized to 0, 41h,
; and 5

DATA2:
dw 0,'A', 1234h ; sets aside 6 bytes at the current address. The

; bytes are initialized to 0, 41h and 1234h

DATA3:
ds 10 ; sets aside 10 bytes at the current address.

; All 10 bytes are initialized to 0

DATA4:
ds 10 (101b) ; sets aside 10 bytes at the current address.

; All 10 bytes are initialized to 101b or 5

DATA5:
dsw 10h ; sets aside 10h=16 words (32 bytes)at the

; current address. All 16 words are initialized
; to 0

DATA6:
dsw 10h (3) ; sets aside 10h=16 words or 32 bytes at the

; current address. All 16 words are initialized
; to 3

Expressions may be used in specifying the contents of the memory block. For example,

BEGIN:
.
.

17

.
DATA7:

dw begin

places the value of the label BEGIN at the current location. DATA7 may be interpreted as a pointer that initially
points to BEGIN. This pointer may be changed later by the program to point to another label.

The pseudo-op EQU, DEFA, DEFB, and DEFR, define symbols. EQU is used for generic symbols, DEFA, for
internal RAM locations, DEFB for bits of the bit addressable internal memory, and DEFR, for the Special
Function Registers (SFR) of the microcontroller. SFRs must be defined at even addresses. A dot (.) is used to
separate the byte address from the bit in defining bits. Some examples follow.

SFR1 DEFR 0ffe0h
SFR2 DEFR 0ffe2h
RAM1 DEFA 0faffh
Flags DEFA 0fdd0h
Flag1 DEFB 0fdd0h.0 ; bit 0 of byte 0fdd0h
Flag2 DEFB Flags.1 ; bit 1 of byte 0fdd0h

Speed EQU 1234h
HiSpeed EQU 2*Speed ; HiSpeed is 2468h

8.4 Compiler Directives
There are two compiler directives: #INCLUDE and EVEN. The include directive inserts another file into the
source. It is used as below.

#include "filename.ext"

The file specified by filename.ext must be found in the current directory or path. The file filename.ext will be
opened and merged with the source (assembly) code. The number of include files is limited by the DOS
parameters BUFFERS and FILES. See your DOS manual for further details. Up to 8 include file may be nested.
That is, include files may be specified inside include files, nested up to 8 levels.

The EVEN compiler directive inserts a single byte if the current location counter is an odd number. This assures
that the next instruction starts at an even address.

8.5 Constants
Constants may be decimal, binary, hexadecimal, or ASCII. Hexadecimal constants must start with a numerical
digit between 0 and 9. The suffixes b, d, and h are used to denote binary, decimal, and hexadecimal constants,
respectively. If no suffix is present, the constant is assumed to be decimal. ASCII constants are placed within
single quotation marks. See the following examples.

10, 10d, 10D, 0ah, 0aH, 0Ah, 0AH, 1010b, 1010B all have the value 10.

Note that hexadecimal numbers must start with a numerical character. Although 0ah is valid, ah is not.

The ASCII code of the letter 'A ' is 41h. Ra66 converts 'A' to the numerical value 41h. This numerical value may
then be used in expressions, such as 'A'+3, which is evaluated as 44h.

18

8.6 Expressions
Expressions may involve constants, defined values, or label values (memory addresses). During assembly
passes, expressions are evaluated as soon as all the information is available. Thus, expressions that contain
forward references are evaluated during the second pass. Expressions may require looking up the equate tables
recursively. For example, in evaluating the value of four the assembler must evaluate the symbol two, and
then the symbol one.

four EQU two*two
two EQU one+one
one EQU 1

mov RH0, #four

The following basic logical and arithmetic operations are supported.

Operation Symbol Alternate
Symbol

Remark

Add +
Subtract -
Multiply *
Divide /
Modulus % MOD
Invert ! NOT
Shift Left << SL parentheses required
Shift Right >> SR parentheses required

Parentheses may be used to group terms of an expression. The parentheses may be nested. The number of
such nestings is limited only by the amount of dynamic memory available. Some examples follow.

1+2 ; 1+2 is 3
3*(1+4) ; 3*(1+4) is 15
1010b/10b ; 10/2=5
(1<<2) ; 1<<2 is 4. Parentheses required.
(1 SL 2) ; same as 1<<2
(0F0h>>4) ; 0F0h>>4 is 0Fh=15. Parentheses required.
(1 SR 2) ; same as 0F0>>4
5%2 ; 5 % 2 is 1
5 MOD 3 ; the same as 5%2
!5 ; !5 is FFFAh (or FAh if the type is BYTE or DATA8)
NOT 5 ; same as !5

8.7 Functions
There are two built-in functions: high() and low(). They return the high byte and the low byte of a word (two-byte
expression), respectively.

Low(1234h) is 34h
High(1234h) is 12h

19

8.8 Addressing Modes
The instructions use a powerful set of addressing modes. The operands are usually one of REG, MEM, DATA,
or Rw (GPR) types. REG is a Special Function Register (SFR) which, in addition to its 16-bit absolute address,
has an 8-bit number. MEM is the address of a memory location, DATA is a constant of 3, 4, 8, or 16 bits, and Rw
is a register of the register bank. Word registers are denoted by Rw, and the byte registers by Rb. The constant
data operands typically follow a pound sign '#'. This implies that the operand is a constant value rather than a
memory location. For example, both of the instructions

mov R0, #1234h
mov R0, 1234h

place a word (two-byte value) in the R0 register. In the first case, the value 1234h is placed into the register, 12h
as the high byte, and 34h, as the low byte. The second instruction moves the contents of the memory location
1234h into the register R0. Thus, the actual content of R0 after the instruction depends on exactly what is in
memory location 1234h at run time.

The examples given below refer to variables (word and byte memory locations), B1 and W1, as well as bits BIT1
and BIT2. These variables may be defined by the DB, DW, and DEFB pseudo-operations as follows.

; ---
B1: db 0
 EVEN
W1: dw 0
BIT1 DEFB 0FDDEh.0
BIT2 DEFB 0FDDEh.1
; --

See the demonstration program DEMO02.asm for a list of all instructions.

8.9 Assembly Errors

8.9.1 Attempt to Redefine Symbol or Label
A label or symbol of the same name was previously defined.

8.9.2 Incorrect Symbol or Label
Symbols and labels may only include letters [a-z], or [A-Z], digits [0-9], or the underscore character (_).

8.9.3 Incorrect Operand
The operand type is not permitted in the instruction. For example,

movb R0, R1

is a byte-oriented move, where the operands are word operands.

8.9.4 Attempt to Branch Out of Bounds
The jump point of a branching instruction is beyond reach. Relative jumps and calls are limited to the range of [-
127 to 128] words from the current address. The current address is the address of the first byte of the following
instruction. Note also that target addresses must be even, since all C166 instructions start at even addresses.

8.9.5 Unresolved Operand(s)
Either a typographical error was made in naming the operand, or the operand is not defined. If the operand is an
expression, one or more of the terms is undefined.

8.9.6 Undecodable Line
This error is a "catch-all" error. Misspelled operation codes will generate this error. As in, for example,

20

move R0, R1
Note that the assembler continues to read tokens until a valid operation code is detected. Therefore, this error
may be given after the instruction following the "MOVE" instruction. That is, the assembler may assume that
MOVE is a label or a symbol, for example.

8.9.7 Operand(s) Out of Range
This message is generated when the specified operand has a value too large or too small. For example,

movb RL0, #1234h

attempts to move a 16-bit word into a byte register.

8.9.8 Incorrect Operand Types
Some instructions are limited to word, byte, or bit operands. Moreover, a word may be a memory location, a
Special Function Register address or a data byte of type #data16. Sometimes this error is generated when a
symbol is not properly defined.

8.9.9 Incorrect Register Use
An operand, which is a constant or a memory type, was expected, but a register was found.

8.9.10 Incorrect Constant
A constant or an expression contains an error. For example, hexadecimal numbers must start with a numerical
digit and end with the letter 'h' or 'H'. Expressions involving incorrect constants also generate this message.

8.9.11 Odd or Out-of-Range Address
The specified address is either odd or beyond the reach of a branching instruction. See the error message
"Operand(s) Out of Range."

8.9.12 Undefined Symbol
A symbol appears in the instruction, but no definition of the symbol is found. Sometimes this message is
generated if an include file containing the symbol definitions was not found, or when a misspelled operation code
is mistaken for a symbol.

8.9.13 Incorrect Processor
There are some instructions specific to the C167, such as ATOMIC, which are not supported by the C166.
Change your hardware configuration.

21

9.0 THE C166 INSTRUCTION SET

9.1 Overview
The instruction set of the C166 family of microcontrollers is classified into the following categories:

Arithmetic
Logic
Boolean Bit-oriented instructions
Compare
Loop control
Prioritization
Shift and rotate
Data transfer Move instructions
Branching Call and Jump instructions
System Stack Push and Pop instructions
System Control

9.2 Arithmetic Instructions
Arithmetic instructions consist of the following:

• Addition
• Subtraction
• Multiplication
• Division
• Complement
• Negation

9.2.1 Addition
There are four addition instructions: ADD, ADDB, ADDC, and ADDCB. ADD and ADDC are used for word (16-
bit) operands. ADDC adds the two operands and the carry flay. ADDC is convenient for multi-word addition
tasks. ADDB and ADDCB are the addition instructions used for byte (8-bit) operands. The addressing modes
are listed below.

ADD
add R0, R1 ; Rw. Rw
add R0, [R1] ; Rw, [Rw]
add R0, [R1+] ; Rw, [Rw+]
add R0, #0 ; Rw, #data3
add SFR1, #0ffffh ; reg, #data16
add R0, #0ffffh ; reg, #data16
add SFR1, 1234h ; reg, mem
add SFR1, #W1 ; reg, mem
add R0, 1234h ; reg, mem
add R0, W1 ; reg, mem
add W1, SFR1 ; mem, reg
add W1, R0 ; mem, reg

ADDB
addb RL0, RH0 ; Rb, Rb
addb RL0, [R1] ; Rb, [Rw]
addb RL0, [R1+] ; Rb, [Rw+]
addb RL0, #1 ; Rb, #data3
addb RL0, #0ffh ; Rb, #data8
addb RL1, B1 ; Rb, mem

22

addb SFR1, RH0 ; mem, reg

ADDC
addc R0, #2 ; Rw, #data3
addc SFR1, #0ffffh ; reg, #data16
addc R0, #0ffffh ; reg, #data16
addc SFR1, 1234h ; reg, mem
addc SFR1, W1 ; reg, mem
addc W1, SFR1 ; mem, reg
addc W1, R0 ; mem, reg

ADDCB
addcb RL0, #1 ; Rb, #data3
addcb RL0, #0ffh ; Rb, #data8
addcb RH7, B1 ; reg, mem
addcb SFR1, RH0 ; mem, reg

9.2.2 Subtraction
There are four subtraction instructions: SUB, SUBB, SUBC, and SUBCB. SUB and SUBC are used for word (16-
bit) operands. SUBC subtracts the second operand and the carry flay from the first operand. SUBC is
convenient for multi-word subtraction tasks. SUBB and SUBB are the subtraction instructions used for byte (8-
bit) operands. The addressing modes are listed below.

SUB
sub R0, R1 ; Rw. Rw
sub R0, [R1] ; Rw, [Rw]
sub R0, [R1+] ; Rw, [Rw+]
sub R0, #0 ; Rw, #data3
sub SFR1, #0ffffh ; reg, #data16
sub R0, #0ffffh ; reg, #data16
sub SFR1, 1234h ; reg, mem
sub SFR1, W1 ; reg, mem
sub W1, SFR1 ; mem, reg
sub W1, R0 ; mem, reg

SUBB
subb RL0, RH0 ; Rb, Rb
subb RL0, [R1] ; Rb, [Rw]
subb RL0, [R1+] ; Rb, [Rw+]
subb RL0, #1 ; Rb, #data3
subb RL0, #0ffh ; Rb, #data8
subb RL6, B1 ; reg, mem
subb SFR1, RH0 ; mem, reg

SUBC
subc R0, #2 ; Rw, #data3
subc SFR1, #0ffffh ; reg, #data16
subc R0, #0ffffh ; reg, #data16
subc SFR1, 1234h ; reg, mem
subc SFR1, W1 ; reg, mem
subc W1, SFR1 ; mem, reg
subc W1, R0 ; mem, reg

SUBCB
subcb RL0, #1 ; Rb, #data3
subcb RL0, #0ffh ; Rb, #data8
subcb RH6, B1 ; reg, mem

23

subcb SFR1, RH0 ; mem, reg

9.2.3 Multiplication
There are two multiplication instructions: MUL and MULU. The operands are words (16 bits). MUL is used for
signed words, and MULU for unsigned words. The result of the multiplication is placed in the 32-bit MD register
of the microcontroller. The addressing modes are listed below.

mul R0, R15 ; Rw
mulu R0, R14 ; Rw

9.2.4 Division
There are four division instructions: DIV, DIVL, DIVLU, and DIVU. All division operations use the 32-bit MD
register of the microcontroller. The MD register holds a number which is divided by the operand. DIV and DIVU
are used for word (16-bit) operands. DIV assumes that the words are signed integers. DIVU is used for unsigned
integers. DIVL and DIVLU are long division instructions. MUL is used for signed words, and MULU for unsigned
words. The result of the multiplication is placed in the MD register of the microcontroller. The addressing modes
are listed below.

div R0 ; Rw
divl R0 ; Rw
divlu R0 ; Rw
divu R0 ; Rw

9.2.5 Complement
Word or byte registers may be complemented. The complement operation, also known as one's complement,
toggles each bit of the operand. It is therefore equivalent to the exclusive or of the operand with FFh or FFFFh.
For example, the complement of 3Dh is C2h. Note that 3Dh+C2h=FFh

cpl R0 ; Rw
cplb RL0 ; Rb

9.2.6 Negation
Word or byte registers may be negated. The negation operation, also known as two's complement, is useful for
obtaining signed integers. Two's complement is equivalent to toggling each bit of the operand and then adding
one. For example, the two's complement of 3Dh is C3h. Note that 3Dh+C3h=100h, or ignoring the external
carry bit, 3Dh+C3h=0. In this sense, C3 is considered as -3Dh (negative 3Dh).

neg R0 ; Rw
negb RL0 ; Rb

9.3 Logic Instructions
Logic instructions consist of AND, OR, and EXCLUSIVE-OR operations. Similar to the arithmetic operations
addition and subtraction, many word- and byte-oriented addressing modes are available.

9.3.1 AND Operations
The AND instructions are used for word operands, and the ANDB, for the byte operands.

AND
and R0, R1 ; Rw. Rw
and R0, [R1] ; Rw, [Rw]
and R0, [R1+] ; Rw, [Rw+]
and R0, #0 ; Rw, #data3
and SFR1, #0ffffh ; reg, #data16
and R0, #0ffffh ; reg, #data16
and SFR1, 1234h ; reg, mem

24

and SFR1, W1 ; reg, mem
and W1, SFR1 ; mem, reg
and W1, R0 ; mem, reg

ANDB
andb RL6, RL7 ; Rb, Rb
andb RL0, [R1] ; Rb, [Rw]
andb RL0, [R1+] ; Rb, [Rw+]
andb RL0, #1 ; Rb, #data3
andb RL0, #0ffh ; Rb, #data8
andb RL2, B1 ; reg, mem
andb SFR1, RH0 ; mem, reg

9.3.2 OR Operations
The OR instructions are used for word operands, and the ORB, for the byte operands.

OR
or R0, R1 ; Rw. Rw
or R0, [R1] ; Rw, [Rw]
or R0, [R1+] ; Rw, [Rw+]
or R0, #0 ; Rw, #data3
or SFR1, #0ffffh ; reg, #data16
or R0, #0ffffh ; reg, #data16
or SFR1, 1234h ; reg, mem
or SFR1, W1 ; reg, mem
or W1, SFR1 ; mem, reg
or W1, R0 ; mem, reg

ORB
orb RL6, RL7 ; Rb, Rb
orb RL0, [R1] ; Rb, [Rw]
orb RL0, [R1+] ; Rb, [Rw+]
orb RL0, #1 ; Rb, #data3
orb RL0, #0ffh ; Rb, #data8
orb RH1, (B1+3) ; reg, mem
orb SFR1, RH0 ; mem, reg

9.3.3 EXCLUSIVE OR Operations
The EXOR instructions are used for word operands, and the EXORB, for the byte operands.

EXOR
xor R0, R1 ; Rw. Rw
xor R0, [R1] ; Rw, [Rw]
xor R0, [R1+] ; Rw, [Rw+]
xor R0, #0 ; Rw, #data3
xor SFR1, #0ffffh ; reg, #data16
xor R0, #0ffffh ; reg, #data16
xor SFR1, 1234h ; reg, mem
xor SFR1, W1 ; reg, mem
xor W1, SFR1 ; mem, reg
xor W1, R0 ; mem, reg

EXORB
xorb RL6, RL7 ; Rb, Rb
xorb RL0, [R1] ; Rb, [Rw]
xorb RL0, [R1+] ; Rb, [Rw+]

25

xorb RL0, #1 ; Rb, #data3
xorb RL0, #0ffh ; Rb, #data8
xorb RL1, B1 ; reg, mem
xorb SFR1, RH0 ; mem, reg

9.4 Boolean (Bit-Oriented) Instructions
Boolean operations are used for setting and clearing individual bits. Moreover, a bit may be moved, or two bits
may be compared, ANDed, ORed, or EXORed. The C166 family of microcontrollers has a powerful instruction
which allows selectively replacing individual bits of a byte. Three byte operands are needed. The data byte
holding the 8 bits, a mask byte indicating which of the 8 bits are to be replaced, and a third byte, giving the new
values of the bits to be replaced. This operation may be viewed as two byte-oriented operations: first AND the
data byte with a mask byte, clearing the bits to be replaced; then, ORing the masked data byte with the third
operand which provides the new bit values. The two instructions, BFLDH and BFLDL are used for the high and
low bytes of the bit-addressable word. Examples follow.

bclr BIT1 ; bit_address
bset BIT1 ; bit_address
bmov BIT1, BIT2 ; bit_address, bit_address
bmov BIT1, BIT2 ; bit_address, bit_address
band BIT1, BIT2 ; bit_address, bit_address
bor BIT1, BIT2 ; bit_address, bit_address
bxor BIT1, BIT2 ; bit_address, bit_address
bcmp BIT1, BIT2 ; bit_address, bit_address

bfldh BIT_OFF1, #7, #0eh ; bit_offset, #mask8, #data8
bfldl BIT_OFF2, #7, #0eh ; bit_offset, #mask8, #data8

9.5 Compare Instructions
Compare operations are similar to subtraction. The flags are modified according to the operation, except that the
result of the subtraction is not kept. A conditional branching instruction typically follows a compare operation.

 cmp R5, R10 ; Rw, Rw
 cmp R6, [R3] ; Rw, [Rw]
 cmp R0, [R1+] ; Rw, [Rw+]
 cmp R0, #1 ; Rw, #data3
 cmp SFR1, #0fedch ; reg, #data16
 cmp R0, #0fedch ; reg, #data16
 cmp SFR1, 1234h ; reg, mem
 cmp SFR1, W1 ; reg, mem
 cmp R0, W1 ; reg, mem

 cmpb RL6, RL7 ; Rb, Rb
 cmpb RL0, [R1] ; Rb, [Rw]
 cmpb RL0, [R1+] ; Rb, [Rw+]
 cmpb RL0, #1 ; Rb, #data3
 cmpb RL0, #0ffh ; Rb, #data8
 cmpb RH1, B1 ; reg, mem
 cmpb RH0, SFR1 ; reg, mem

9.6 Loop Control Instructions
Loop control instructions are powerful combinations of compare and increment or decrement instructions. Word
registers (Rw) are used. The register is compared to the second operand which is either a constant or the
contents of a memory location. After the flags are modified according to the compare operation, the word

26

register is either incremented or decremented. Moreover, the register may be incremented or decremented once
or twice. The former is convenient for loops that progress byte-wise, and the latter, word-wise. The specific
addressing modes are shown by the examples below.

 cmpd1 R0, #3 ; Rw, #data4
 cmpd1 R1, #1234h ; Rw, #data16
 cmpd1 R2, W1 ; Rw, mem

 cmpd2 R3, #3 ; Rw, #data4
 cmpd2 R4, #1234h ; Rw, #data16
 cmpd2 R5, W1 ; Rw, mem

 cmpi1 R6, #3 ; Rw, #data4
 cmpi1 R7, #1234h ; Rw, #data16
 cmpi1 R8, W1 ; Rw, mem

 cmpi2 R9, #3 ; Rw, #data4
 cmpi2 R10, #1234h ; Rw, #data16
 cmpi2 R11, W1 ; Rw, mem

9.7 Prioritization
The prioritization operation is typically used in floating-point arithmetic routines. The second operand is shifted
to the left until its most significant bit is 1. The number of such shifts is stored in the first operand. Note that the
number of shifts required is between 0 and 15. If the second operand is zero, the number of shifts is still set to 0,
but the zero flag is set. Otherwise, the zero flag is cleared. Only word registers may be used.

R0, R1 ; Rw, Rw

9.8 Shift and Rotate Instructions
Shift and rotate instructions use word register operands. The number of shifts is specified either as a constant or
as the contents of a word register. SHL, SHR, ROL, and ROR are the shift left, shift right, rotate left, and rotate
right instructions. As the bits are shifted, zeros are introduced as new bits. The bit that is shifted out of the word
is also placed into the carry flag. In the rotate operations, the bit that is shifted out is introduced as the new bit.
That is, the rotate instructions are over 16 bits. The bit that is shifted out and introduced as the new bit in a
rotate instruction is also copied into the carry flag. The arithmetic shift right (ASHR) operation preserves the sign
of a signed integer operand by introducing either zeros or ones, depending on the most significant bit of the
operand.

SHIFT
shl R0, R1 ; Rw, Rw
shl R1, #1111b ; Rw, #data4
shr R0, R1 ; Rw, Rw
shr R1, #1111b ; Rw, #data4

ashr R0, R1 ; Rw, Rw
ashr R1, #1111b ; Rw, #data4

ROTATE
rol R0, R1 ; Rw, Rw
rol R1, #1111b ; Rw, #data4
ror R0, R1 ; Rw, Rw
ror R1, #1111b ; Rw, #data4

27

9.9 Data Transfer Instructions
There are four types of move instructions: MOV for word operands, MOVB for byte operands, MOVBS for signed
extended moves of bytes into words, and MOVBZ for zero-extended moves of bytes into words. The latter two
are used when a byte is to be moved into a word. In either MOVBS or MOVBZ, the bytes are moved into the low
byte of the destination. The high byte of the destination is set to zero in MOVBZ, used when the source byte is
an unsigned integer. MOVBS fills the high byte of the destination with either ones or zeros, depending on the
most significant bit of the source byte. MOVBS is used when the source byte is a signed integer.

In register indirect addressing, that is, when a register holds the address of the source or destination, the register
may be post incremented or pre-decremented. In byte moves, the register value is changed by one, and in word
move operations, by two. For instance,

mov R0, [R1+]

moves the word whose address is in register R1 into R0. Then, R1 is set to R1+2. Similarly,

movb [-R0], RH1

moves a byte using the indirect addressing mode. But first, the value of R0 is set to R0-1. Then, the byte in
RH1 is moved to the address specified by R0.

MOV
mov R0, R1 ; Rw, Rw
mov R0, #15 ; Rw, #data4
mov SFR1, #65535 ; reg, #data16
mov R0, #65535 ; reg, #data16
mov R0, [R1] ; Rw, [Rw]
mov R0, [R1+] ; Rw, [Rw+]
mov [R0], R1 ; [Rw], Rw
mov [-R0], R1 ; [-Rw], Rw
mov [R0], [R1] ; [Rw], [Rw]
mov [R0+], [R1] ; [Rw+], [Rw]
mov [R0], [R1+] ; [Rw], [Rw+]
mov R0, [R1 + #1234h] ; Rw, [Rw + #data16]
mov [R0 + #1234h], R1 ; [Rw + #data16], Rw
mov [R1], W1 ; [Rw], mem
mov W1, [R1] ; mem, [Rw]
mov W1, SFR1 ; mem, reg
mov SFR1, W1 ; reg, mem

MOVB
movb RL0, RH1 ; Rb, Rb
movb RH0, #15 ; Rw, #data4
movb RH0, #16 ; reg, #data8
movb RL7, [R1] ; Rb, [Rw]
movb RH0, [R1+] ; Rb, [Rw+]
movb [R0], RL1 ; [Rw], Rb
movb [-R0], RH1 ; [-Rw], Rb
movb [R0], [R1] ; [Rw], [Rw]
movb [R0+], [R1] ; [Rw+], [Rw]
movb [R0], [R1+] ; [Rw], [Rw+]
movb RL0, [R1 + #1234h] ; Rb, [Rw + #data16]

28

movb [R0 + #1234h], RH1 ; [Rw + #data16], Rb
movb [R4], W1 ; [Rw], mem
movb W1, [R4] ; mem, [Rw]
movb W1, SFR1 ; mem, reg
movb SFR1, W1 ; reg, mem

MOVBS
movbs R0, RL1 ; Rw, Rb
movbs W1, SFR1 ; mem, reg
movbs SFR1, W1 ; reg, mem

MOVBZ
movbz R0, RL1 ; Rw, Rb
movbz W1, SFR1 ; mem, reg
movbz SFR1, W1 ; reg, mem

9.10 Branching Transfer Instructions
There are four types of branching instructions; jumps, calls, traps (interrupts), and returns. Each type consists of
one or more specific forms. The conditional branching instructions use a common set of condition codes.

Condition Code Description
cc_UC unconditional
cc_Z zero
cc_NZ not zero
cc_V overflow
cc_NV no overflow
cc_N negative
cc_NN not negative
cc_C carry
cc_NC no carry
cc_EQ equal
cc_NE not equal
cc_ULT unsigned less than
cc_ULE unsigned less than or equal
cc_UGE unsigned greater than or equal
cc_UGT unsigned greater than
cc_SLT signed less than
cc_SLE signed less than or equal
cc_SGE signed greater than or equal
cc_SGT signed greater than
cc_NET not equal and not end of table

Jump instructions consist of absolute (JMPA), indirect (JMPI), relative (JMPR), and inter-segment (JMPS) jumps.
Jumps may also be conditioned on the state of a bit: if bit set (JB) and if bit not set (JNB). There are two
additional bit-dependent jumps: JBC and JNBS. These are similar to JB and JNB, except that, after the
instruction, JBC clears the bit, and JNBS sets the bit.

jmpa cc_UC, moves ; cc, code_address
jmpi cc_UC, [R0] ; cc, [Rw]
jmpr cc_UC, moves ; cc, relative_address
jmps 1, 0 ; segment, code_address

jb BIT1, moves ; bit_address, relative_address
jbc BIT1, moves ; bit_address, relative_address

29

jnb BIT1, moves ; bit_address, relative_address
jnbs BIT1, moves ; bit_address, relative_address

The four addressing modes of the jump instructions are also valid for the call instructions: CALLA, CALLI,
CALLR, and CALLS.

calla cc_UC, moves ; cc, code_address
calli cc_UC, [R0] ; cc, [Rw]
callr moves ; cc, relative_address
calls 1, 0 ; segment, code_address

In addition, an unconditional call instruction, PCALL pushes the first operand onto stack and makes a call to the
second operand

pcall SFR1, moves ; reg, code_address

All interrupts may be invoked by software by the TRAP instruction. The single operand specifies the trap
(interrupt) number. The trap instruction pushes the Code Segment Pointer (CSP), the Instruction Pointer (IP),
and the Program Status Word (PSW) before the branch.

trap #1ch ; trap #7

The instruction RET pops the Instruction Pointer (IP) to return from a subroutine. RET is typically used at the
end of a subroutine which was branched to using a CALLA , CALLI, or CALLR instruction. RETS additionally
pops the Code Segment Pointer (CSP) from stack. RETS is typically used at the end of a subroutine which was
branched to by a CALLS instruction. RETP is similar to the RET instruction, except that a word is poped off
stack into the operand. RETP is useful when the subroutine is to return an integer (word) value. Finally, RETI
pops PSW, IP, and CSP from the stack. It also resets the microcontrollers interrupt system to indicate the end of
an interrupt (trap). RETI is typically used at the end of interrupt service routines.

ret
rets
retp SFR1 ; reg
reti

9.11 System Stack Instructions
System stack instructions are the push, pop and the switch context (SCXT) instructions. Only words may be
pushed or popped. If byte values are to be stored on stack, they must first be placed into words. For example,
although RL0 cannot be pushed, R0 can be pushed. PUSH places the word operand on stack, and POP
removes them, transferring the top of stack to the operand. SCXT is a combination of push and move
operations. The register specified by the first operand is pushed. Then the second operand is moved into the
register. The second operand may be a constant or the contents of a memory location.

pop SFR1 ; reg
pop R1 ; reg
push SFR1 ; reg
push R1 ; reg
scxt SFR1, #1234h ; reg, #data16
scxt R1, #1234h ; reg, #data16
scxt SFR1, W1 ; reg, mem
scxt R1, W1 ; reg, mem

Note that SCXT is a powerful instruction when used with the Context Pointer (CP). For example,

30

scxt CP, #0FC80h ; select a new register bank
.
.
.
.
pop CP ; re-institute the old register bank

pushes CP on stack and modifies it to be FC80h. This determines a new address of the general purpose
registers (GPRs). Once the section of code is completed, the old register bank may be re-instituted by simply
popping CP.

9.12 System Control Instructions
The system control instructions do not take any operands. They include software reset (SRST), idle mode
(IDLE), power down (PWRDN), service watchdog timer (SRVWDT), disable watchdog timer (DISWDT), and end
of initialization (EINIT).

System control instructions are protected instructions that take four bytes. The first byte of the instruction is
repeated twice again as instruction bytes 3 and 4. If the processor fails to receive these two duplicate bytes, an
interrupt (the protection fault trap) is invoked.

srst
idle
pwrdn
srvwdt
diswdt
einit

The 167 has additional instructions to access the extended features and the extended register set. These
instructions are listed below.

atomic #3 ; #data2
extr #3 ; #data2
extp R0, #3 ; Rw, #data2
extp #10b, #3 ; #page10, #data2
extpr R0, #3 ; Rw, #data2
extpr #01b, #3 ; #page10, #data2
exts R0, #3 ; Rw, #data2
exts #11b, #3 ; #seg8, #data2
extsr R0, #3 ; Rw, #data2
extsr #00b, #3 ; #seg8, #data2

9.13 Miscellaneous Instructions
The no operation instruction (NOP) simply wastes a instruction cycle. It takes no operands.

nop

31

10.0 Rc66 -- THE READS166 C COMPILER

10.1 Native 32-Bit Compiler
Rc66 is designed as to be an integral component of the READS166 Integrated Development Environment, rather
than a standard ANSI C compiler. The rapid application development aspects of READS166 have been the
guiding theme in designing Rc66.

The READS166 compiler, the Rc66 is implemented in native 32-bit code as a DLL. It is specifically written for
the 32-bit MS Windows (TM) environments Windows95 and WindowsNT. As such it takes advantage of the
Windows graphical user interface, memory and file management systems.

10.2 One-Step Compilation
Rc66 produces HEX code from C source in one step, thus eliminating the need for linking. The speed and
capabilities of contemporary personal computers are not pushed even if all source code is recompiled each time
there is a modification. This one-step compilation approach allows reusable code to be stored in source form
rather than in object form in libraries. Library management is simplified. The code is simply recompiled for
different versions, for example for debug versus release versions, or for different memory maps.

Rc66 has an internal profiler that by default will not produce machine code for functions not called in the
program. This way your final HEX code will not grow even if you include source code from an archive that
contains unwanted functions. You may override this default behavior by simply clicking on a check box in the C
options dialog.

10.3 Special Function Registers
Rc66 handles the Special Function Registers (SFRs) and their bits in a somewhat different fashion than similar C
compilers for microcontrollers. Rather than introducing C language extensions such as SFR, SFRBIT, XSFR,
etc, Rc66 introduces the storage class specifier “predef” which simply instructs the compiler to refer to the
variable by its name rather than allocating memory for it. The keyword is short for “predefined.” This approach
is similar to the use of the storage class specifier “register” where the C variable is kept in a register. With this
approach, standard C variable type specifiers and type qualifiers may be used. For example,

predef unsigned int SYSCON;

instructs the compiler that SYSCON is an unsigned integer which when generating code, should be referred to by
its name. Predefined variables must be declared as global variables.

Rc66 uses the type “bit” only for predefined variables, for example

predef bit IEN;

In the following example, the value of the SYSCON register of the 166 processor is modified to run at zero wait
states.

// --- Uses No Wait States ---
predef unsigned int SYSCON;

void main(void){

 SYSCON &= 0xF;
 .
 .
 .
}

32

// --- End Of Program ---

10.4 Interrupt Service Routines
Rc66 fully supports interrupts. Unlike similar compilers, Rc66 does not force binding the Interrupt Service
Routine (ISR) to the interrupt source in compile time. Rather, the ISR address is placed into the interrupt vector
of the microcontroller along with an absolute jump instruction. This way, ISRs may be switched in run time.

10.5 Writing Interrupt Service Routines (ISRs)
An interrupt-driven approach requires the following steps.:

1. Writing the interrupt Service Routine (ISR)
2. Configuring the Interrupt Source
3. Setting the interrupt vector and interrupt priority
4. Enabling the interrupt
5. Optionally, initiating the process
6. Cleaning up after the process is completed.

These steps are illustrated with an example given in the on-line help section Software Experiments, and in
Appendix E. The example uses port P2.8 as an external interrupt input. When the state of P2.8 makes a one-to-
zero (high-to-low) transition, an interrupt is generated.

1. Writing the ISR
Since interrupt service routines are called upon hardware signals, they cannot have arguments or return a value.
Consequently, any information exchange between the foreground code and interrupt service routines must be
accomplished by global variables that are visible to all parts of the program. In the example given below, the
interrupt service routine uses the global variable nCount to pass information to the foreground program.

The keyword "interrupt" instructs the compiler that the function must be written as an interrupt service routine.
This essentially means pushing and popping all relevant registers and returning with an RETI instruction. Rc66
also uses a different expression stack set up mechanism for interrupt service routines. The "interrupt" keyword
should be considered similar to the type qualifier keyword "volatile."

We use CAPCOM8 to generate interrupts on the falling edge of the input. Thus the lowest nibble of CCM2 is set
to 2. Each time P2.8 makes a one-to-zero transition an interrupt will be generated.

The ISR is given below.

/* -------------------- */
void interrupt Isr(void){
 nCount++; // increment count
}

The support function SetIntVec() is placed in the archive UTILITIES in module INTUTIL.C. You may use this
function in your applications, or remove the debug suppression directive and single step through SetIntVec() to
inspect its operation.

2. Configuring the Interrupt Source
Most interrupts involve some type of peripheral device that needs to be configured. In this example, the capture-
compare unit is responsible for generating the interrupt. The last nibble of SFR CCM2 is set to 2 to instruct the
capture-compare unit to generate interrupts on the falling edge of the input P2.8.

CCM2&=0xFFF0;
CCM2|=2; // CCMOD8=2 (interrupt on neg edge)

33

3. Setting the Interrupt Vector and Priority
The 166 family of microcontrollers have dedicated interrupt vectors for the various hardware interrupts. A jump
instruction to the interrupt service routine must be placed at these predefined vectors. The archive function
SetIntVec() sets the interrupt vector. SetIntVec() takes two arguments: the vector and the address of the
interrupt service routine.

The CAPCOM interrupt control register CC8IC is initialized to 4Ch, which sets its enable flag and assigns it an
interrupt priority of 3 with group level 0.

// --- set interrupt vector ---
SetIntVec(0x60, Isr);

// --- set interrupt priority ---
CC8IC=0x4C; // enable CAPCOM8 interrupts - low priority

4. Enabling the interrupt
Although we enabled the CAPCOM0 interrupt, the CPU will not process interrupts unless the master interrupt
enable flag IEN located in the PSW register is set. Simply set IEN=1 to allow interrupts.

// --- turn master interrupt enable flag on ---
IEN=1; // turn master interrupt enable on

5. Initiating the Process
Some interrupts are generated at the end of a process. For example, a timer interrupt is generated when the
timer rolls over. The timer must be started to initiate the process. Similarly, an analog-to-digital conversion
completion interrupt needs the ADC to be started. In this example, the external interrupt is not a process
completion interrupt, and thus this step is skipped.

6. Cleaning up after the process is completed
Upon termination, CAPCOM8 interrupts are disabled by clearing the CC8IE flag and giving it priority 0. This is
accomplished by setting CC8IC to 0. Similarly, the master interrupt enable flag IEN is cleared.

DP2_9=0; // P2.9 is an input
IEN=0; // turn master interrupt enable off
CC8IC=0; // disable CAPCOM8 interrupts

The entire program may be found in the executable project PollInt on the distribution disk. Further information is
also available in the on-line help section Software Experiments’.

10.6 Mixing C with Assembly Code
One of the aspects in which embedded code differs from general-purpose computing code is that it often
combines high level code with low level machine code or assembly code. The READS166 IDE and Rc66 strives
to make mixed language programming as painless as possible.

READS166 allows projects to freely combine C modules with assembly modules. An assembly module will most
likely contain functions written in assembly language. These functions are then called from the C code. Rc66
allows passing an integer argument to the assembly routine, and returning an integer argument from the
assembly routine. The first register in the used registers set is reserved for this purpose. Rc66 defines the
macro ASMREG as the current register reserved for such passing to make your code more portable.

The approach is illustrated by an example that uses an assembly language subroutine to give the successor of
an integer. The process involves the following steps.

1. Write your assembly function

34

Save your assembly language subroutine in an assembly module. In this example, consider the follow
subroutine.

; --- assembly language subroutine ---
Successor:

add ASMREG, #1
ret

; --- end of assembly language subroutine ---

2. Write your C program
Your C program will call the assembly routine. The C program needs to have type information about the function
it is calling. Thus a function prototype of the assembly routine is necessary. Consider the following code.

// --- function prototype ---
int Successor(int); // int-int

// --- main code ---
main(void){
int n, k;

 for(n=0; n<10; n++)
 {
 k=Successor(n);
 }
}
// --- end of C code

Place your C code in a C module under the project.

3. Build the project
 When built, Rc66 will combine the C code and the assembly code.

Notes
1. You are not restricted to write subroutines in assembly code, nor are you restricted to call all assembly

routines from the C code. Assembly code may consist of many routines, only a few of which are made
visible to the C code. Similarly, you may use all Ra66 constructs, such as ORG (origin), or DB (define
byte) to place data structures or code in memory. For example, you may prefer writing your interrupt
service routines in assembly and placing jumps at the interrupt vectors.

2. For further examples of mixed-language programming refer to the executable project MIXED and
MIXEDFACTORIAL.

10.7 The Debugger
Debug functions are included in Rc66 which generates instructions embedded into the final HEX code. The
debugger undertakes background communications with a target Rigel board to single step, animate, set break
points, and watch variable values.

Debug instructions increase the size of your final code and marginally slow down its execution even when no
break points are set. You may switch the debug mode on or off from a check box in the Project Build Options
dialog. You may also selectively suppress the generation of debug instructions for individual functions using the
“#pragma DebugOff” directive. This way, while keeping the debug option enabled, you may suppress debug
instructions being generated for functions you have already debugged. For example, modules placed in archives
would typically suppress debug code generation.

35

11.0 A BRIEF REVIEW OF C

11.1 C Language Philosophy
C is by far the High-Level Language (HLL) of choice. C is the first truly portable computer language. There is a
C compiler for virtually all processors. Moreover, C will most likely continue be the dominant HLL for future
generations of processors. This means you may port your code to future hardware with ease. C, being closer to
assembly language, makes it a good language for microcontrollers. Compared to other HLLs, such as BASIC,
you can have finer control over the microcontroller hardware with C.

C forces the code to be more structured. It is not uncommon to see unstructured code with many forward and
backward jumps (among programmers this is referred to as spaghetti code) in assembly or BASIC. C imposes
structure by minimizing or eliminating labels, and by forcing variable declarations.

C is a highly capable language when it comes to making use of previously compiled code. Traditionally libraries
of precompiled code would be linked with C code to produce final executable code. Thus, making use of
external components (external functions or variables, for example) is fundamental to the success of C. With the
appropriate libraries, C may be customized to undertake demanding tasks it was not originally intended to do.
For example, with a good complex number library, C may be used as a number-crunching platform. This
chameleon-like feature of C makes it the language of choice in scientific computing as well as writing large-scale
applications such as computer graphics, word processing, desktop publishing, data base management,
communications programming, and networking.

C is not a language without its critics. The language was designed for writing operating systems. Numerical work
were not top priority issues in designing C. For example, the ANSI standard only requires trigonometric functions
to be provided in double-precision versions, although many compilers, do provide them in single-precision as
well. Similarly, handling multi-dimensional array pointers may seem difficult to the new comer.

Many programmers, when first introduced to C complain that it is a very cryptic language. Granted, it is easier to
write opaque code in C than it is in, say BASIC. Cryptic code usually is a result of trying to shorten the code. It
almost always results in reducing code readability. Although it is possible to write cryptic code in C it is not
necessary.

Finally, C imposes fewer restrictions on the programmer. For example, it is not a strict type checking or strict
range checking language. This gives the programmer more freedom and power, at the expense of added
responsibility to write good crash-proof code. But this is hardly new to assembly programmers. In fact it is this
freedom that makes C a convenient HLL for microcontrollers.

11.1.1 Ingredients of a C Program
A C program consists of functions, variables, and statements. These functions may be user provided, or may
come from one or more Run-Time Libraries (RTLs). A RTL is a collection of precompiled functions that are
linked to your program to produce the final executable code.

Sometimes C is called a function-oriented language. All C instructions must belong to a function. In fact the
entire program is initiated when a special function called “main” is called. When main returns, your program
terminates. The latter must be reviewed in the case of embedded controller code, since embedded controller
code may be required never to terminate.

The traditional “Hello World” program below shows some of the ingredients of the language.

#include <stdio.h>
void main(void){
 printf("\nHello World\n");
}

36

The void preceding ``main'' indicates that function main does not return a value. Similarly, the keyword “void”
which appears inside the set of parentheses immediately following “main” specifies that the function “main” has
no arguments. That is, no parameters are passed to the function.

C string constants are written between double quotation marks. The characters ``\n'' prints a ``new line''
character, which brings the cursor onto the next line.

11.1.2 Code Appearance and Style
The code starts with a series of comments indicating its purpose, as well as its author. It is considered good
programming style to identify and document your work (although, sadly, most people only do this as an
afterthought). Comments can be written anywhere in the code: any characters between /* and */ are ignored by
the compiler and can be used to make the code easier to understand. The use of variable names that are
meaningful within the context of the problem is also a good idea.

11.2 Functions
Function Prototypes
Functions are declared by specifying the type and number of arguments they take and by the type of value they
return. Such declarations are called function prototypes. Consider, for example, the prototype of a successor
function which takes an integer and returns the next integer:

int GetNextInteger(int);

Semicolons are used as delimiters to mark the end of the statements. Blocks of statements are put in curly
brackets (also referred to as braces). A collection of statements placed in curly brackets is called a compound
statement, which acts as a statement.

All C statements are defined in free format, i.e., with no specified layout or column assignment. (Old FORTRAN
programmers will remember the significance of column 6 and 7!) Whitespaces (tabs or spaces) are never
significant, with the exception of being a part of a character string. Thus it is possible to write the “Hello World”
program as follows

#include <stdio.h>void main(void){printf("\nHello World\n");}

which sometimes leads to a cryptic appearance.

11.3 Variables

11.3.1 Scalars
Variable names are arbitrary (with some compiler-defined maximum length, typically 32 characters). C uses the
following standard variable types:

int integer variable
short short integer
long long integer
float single precision real (floating point) variable
double double precision real (floating point) variable
char character variable (single byte)

C requires the variables to be defined before they are used. The following example illustrates the use of
variables.

main(void){
int nNumber, nSuccessor;

 nNumber=1;
 nSuccessor=GetNextNumber(nNumber);

37

}

int GetNextInteger(int n){
 return n+1;
}

C is case sensitive, so function and variable names must be case consistent throughout your program. For
example, nNumber and nNUMBER are not the same!.

In this example, variables are defined within the compound statement. Such variables are called local variables.
They may be used only within the compound statement in which they are defined. All local variables must be
defined before any other statements.

Alternatively, you may have global variables, defined outside the compound statements. These are called global
variables. For example,

int nNumber, nSuccessor;

main(void){

 nNumber=1;
 nSuccessor=GetNextNumber(nNumber);
}

int GetNextInteger(int n){
 return n+1;
}

defines the two integers nNumber and nSuccessor as global variables.

In strict C, global variables may only be used in compound statements that appear below their definitions. Rc66
does not impose this limitation.

Variables may be initialized when defined. Assembly programmers will recognize the similarity between these
definitions and the DB pseudo operation.

int n=0;

not only defines the integer n, but it also sets its initial value to 0.

11.3.2 Pointers
Similar to the BASIC peek and poke functions, C allows direct access to memory. In fact, C provides a very
powerful method of memory access, which makes it the language of choice to write memory intensive
applications.

The approach is based on storing the memory address as a variable. Such a variable is called a pointer (to
memory). Pointers variables (variables which store memory addresses) are declared using the asterisk. Below,
we define an integer n and a pointer to an integer pn.

int n, *pn;

You may extract the memory address of a given variable by the C operator ‘&’. Thus, the statement

pn=&n;

gets the memory address of the integer n and places it into the pointer variable pn. The ampersand operator is
referred to the reference operator.

38

The opposite operation is also needed. The contents of the memory referenced by a pointer is obtained using the
``*'' operator, referred to as the dereference operator. Provided that pn contains the memory address of the
variable n, *pn has the same value as n. For example,

*pn=5;

is equivalent to

n=5;

11.3.3 Arrays
Arrays of any type can be formed in C. The syntax is simple:

type name[dim];

For example,

int nADC[16];

defines an array of 16 integers. C arrays start at position 0. The elements of the array occupy adjacent locations
in memory. C treats the name of the array as if it were a pointer to the first element. This is important in
understanding how to do arithmetic with arrays. Thus, if v is an array, *v is the same as v[0], *(v+1) is the same
as v[1]:

11.4 Constants

11.4.1 Compiler Directives
You can define constants of any type by using the #define compiler directive. Its syntax is simple--for instance

#define ANGLE_MIN 0
#define ANGLE_MAX 360

would define ANGLE_MIN and ANGLE_MAX to the values 0 and 360, respectively. C distinguishes between
lowercase and uppercase letters in variable names. It is customary to use capital letters in defining global
constants.

11.5 Statements
C has six basic classes of statements:

Compound Statements
Expressions
Iteration Statements
Selection Statements
Jump Statements
Labeled Statements

Expressions are the basic staple of any programming language. Statements are usually built around one or
more expressions.

11.5.1 Compound Statements
Compound statements collect a set of statements as well as definitions of local variables. Compound statements
play a central role in iteration statements or selection statements when more than one statement needs to be
executed during an iteration, or as a result of a condition. Consider, for example, the iteration statement

while(expression) statement

39

In most cases, the statement of the above while loop needs to perform several tasks. This is easily
accomplished by a compound statement. In effect, a compound statement introduces a set of statements which,
from a syntactic point of view, act as a single statement.

while(expression)
 {
 statement_1;
 statement_2;
 .
 .
 .
 statement_n;
 }

11.5.2 Expressions
Expressions are the basic staple of any programming language. Perhaps the most commonly used expression is
the assignment expression, such as

n=5;

C allows many assignment operators besides the simple equal assignment.

 = assignment
+= addition assignment
-= subtraction assignment
*= multiplication assignment
/= division assignment
%= remainder/modulus assignment
&= bitwise AND assignment
|= bitwise OR assignment
^= bitwise exclusive OR assignment
>= right shift assignment

The format “variable operation=” is short for “variable=variable operation”. For example,

n+=5;

is equivalent to

n=n+5;

C allows you to put multiple expression in the same statement, separated by a comma. The expressions are
evaluated in left-to-right order. The value of the overall expression is then equal to that of the rightmost
expression.

For example,

n=((k=1),2);

is equivalent to the two assignments

n=2;
k=1;

Similarly, when used as a function argument,

40

f(n,(k=1,k+1),1);

is equivalent to the assignment and function call

k=1;
f(n,2,1);

The comma operator is useful in some cases, such as in iteration statements, but in general, overusing the
comma operator produces unreadable code.

C conditions are also expressions. If an expression is evaluated to be zero, the condition is considered to be
false. Otherwise the condition is true.

11.5.3 Conditions
C conditions are also expressions. If an expression is evaluated to be zero, the condition is considered to be
false. Otherwise the condition is true.

C provides many conditional or logical operations to simplify the evaluation of expressions to be used as
conditions.

== equal to
!= not equal
> greater than
< less than
>= greater than or equal to
<= less than or equal to
&& logical and
|| logical or
! logical not

For example, the expression

(j==2)

has the value 1 only if j is equal to 2.

11.5.4 Iteration Statements
Iteration statements provide code loops which are structured ways to accomplish repetitive algorithmic
procedures. C supports three basic types of iteration statements: the while statement, the do-while statement,
and the for statement. The syntax of each type of iteration statement is given below.

while(expression) statement
do statement while (expression);
for(expression;expression;expression) statement

Note that the statements may be compound statements, possibly (and often) containing other iteration
statements. The while statement evaluates its expression. The statement is executed if the expression is
nonzero. The process is repeated until the expression is evaluated to be zero. For example,

void main(void){
int n=0;

SendStr(“Hello World\n”);
while(n<10)
 {
 SendStr(“hello again\n”);

41

 n++;
 }
}

prints “Hello World” followed by ten lines of “hello again.” Note that the statement of the while statement is a
compound statement. This way, the statement accomplishes more than one task: it prints a string, and it
increments n. The latter task is most important, since otherwise the while expression would never be evaluated
as zero, hence resulting in an endless loop.

Endless loops are not all evil though. Neither is the statement always necessary. Consider for example the
while statement

.

.

.
while(P2_0);
.
.
.

where P2_0 is the value of port 2.0. The program will remain at the while loop until the state of the port bit
becomes 0. Note that the program simply waits (or hangs) at the while statement without executing any other
statement.

The do-while statement is similar to the while statement, except that the statement is first executed, and the
expression evaluated afterwards. The above example could be rewritten as,

void main(void){
int n=0;

SendStr(“Hello World\n”);
do
 {
 SendStr(“hello again\n”);
 n++;
 } while(n<10);
}

Perhaps the C for statement is the most often used iteration statements by programmers new to C. This
statement closely resembles the BASIC for statement and the FORTRAN do statement. There are three
expressions in the C for statement: the initialization expression, the condition expression, and the iteration
expression.

for (initialization_expression; condition_expression; iteration_expression) statement

The for statement may be viewed as a special case of the C while statement, equivalent to the following:

 {
 initialization_expression;

 while (condition_expression)
 {
 statement;
 iteration_expression;
 }
 }

42

The above example is now written with the for statement.

void main(void){
int n;

SendStr(“Hello World\n”);
for(n=0; n<10; n++) SendStr(“hello again\n”);
}

Note that the initialization of the iteration counter n is now moved to the for statement. This is not necessary,
however, since any one of the for expressions may actually be null expressions. That is, the following code has
the same effect.

void main(void){
int n=0;

SendStr(“Hello World\n”);
for(; n<10; n++) SendStr(“hello again\n”);
}

It was mentioned that infinite loops may have their use in programming. In addition, C provides a good
mechanism to break out of a loop. The two C keywords “continue” and “break” provide this additional control.
The “continue” command skips the rest of the statements and repeats the iteration. The “break” command
terminates the iteration and exits from the loop. Again, consider our example.

void main(void){
int n=0;

SendStr(“Hello World\n”);
for(; ; n++)
 {
 SendStr(“hello again\n”);
 if(n>=9) break;
 }
}

Here, we have made two changes. First we replaced the old statement with a compound statement. Next, we
removed the condition from the for statement. The loop is now terminated when n reaches 9 by the break
command. Note that the iteration limit is 9 since n will go from 0 to 9 and hence print the string 10 times.

As an extreme case, consider
void main(void){
int n=0;

SendStr(“Hello World\n”);
for(; ;)
 {
 SendStr(“hello again\n”);
 if(n>=9) break;
 n++;
 }
}

43

Although such programming style may at first seem unusual, it is actually practiced by some. Similarly, it is
perfectly legitimate to write

void main(void){
int n;

SendStr(“Hello World\n”);
for(n=0; n<10; n++, SendStr(“hello again\n”);
}

moving the statement into the for expression. The programmer should strive not only for correct code but for
readable code. With attention to variable and function names as well as programming style as illustrated by
these examples, C could become quite a self-documenting programming language.

11.5.5 Selection Statements
There are two types of selection statements in C: the if (and if-else) statement, and the switch statement.

The if and if-else statements have a straightforward structure:

if(expression) statement
if(expression) statement else statement

For example, consider

void main(void){
int n;

for(n=0; n<10; n++)
 if(n%2) SendStr(“odd\n”);
 else SendStr(“Even\n”);
}

This example prints a series of strings (Even, Odd, …). Note that although the syntax of the program is correct,
many programmers prefer to place any statement following an if(expression) inside curly brackets, as below.

void main(void){
int n;

for(n=0; n<10; n++)
 {
 if(n%2) SendStr(“odd\n”);
 else SendStr(“Even\n”);
 }
}

This improves readability by clearly isolating the statement to be executed when the expression is nonzero.

The switch statement is a powerful construct with the following syntax:

 switch (expression)
 {
 case const_expression_1: statement
 case const_expression_2: statement

.

.

44

 default: statement
 }

The expression must evaluate to an integral value. The value is compared to each constant expression. If an
equal constant expression is found, the corresponding statement is executed. Note that the cases are actually
labels. The program will normally continue executing after the statement. Thus you will frequently find switch
statements in the form

switch (expression)
 {
 case const_expression_1: statement;
 break;
 case const_expression_2: statement
 break;

.

.
 default: statement
 }

11.6 Comments
C comments start with the character pair ‘/*’ and terminate with the pair ’*/’. For example,

/*
the traditional Hello World program
another line of comments
and yet another
*/

/* --- header files --- */
#include <stdio.h>

/* --- main function --- */

void main(void){
 printf("\nHello World\n"); /* print the string */
}
/* --- end of code --- */

illustrates the use of C comments.

Assembly language programmers may find writing 4 extra characters per comment a bit too much, since
anything from a semicolon to the end of the line is a comment in assembly language. C++ introduced a similar
type of comments where a double forward slash denotes the beginning of the comment. As in assembly
language, the comment terminates at the end of the line. Although strict C compilers will not recognize such
comments, Rc66 does. It is then possible to write

/*
 the traditional Hello World program
 another line of comments
 and yet another
*/

// --- main function ---

45

void main(void){
 SendStr("\nHello World\n"); // print the string
}
// --- end of code ---

Note that the C-type comments are still convenient for multi-line comments.

11.7 Standard (Run Time) Libraries
You will notice that the central role is played by the function “printf” (short for print function) which is actually a
library function, rather than a built in C feature. That is, somebody has written the function “printf().” The first
line is a compiler directive instructing the compiler to include the file “stdio.h” in which a prototype of the function
“printf” may be found. The file “stdio.h” is called a header file (thus the extension ‘h’.)The compiler must also be
instructed to link the code with the standard libraries containing the precompiled version of “printf.” Unlike other
HLLs, to include a header file or to link with the proper library is the responsibility of the programmer. RTL
functions such as “printf” are now standard in ANSI C. The K & R textbook lists the content of these and other
standard libraries in its appendix.

Rc66 is not strictly an ANSI C compiler. It is written with a graphical Integrated Development System (IDE) in
mind. Rc66 does not require function prototypes. Rather, it performs a scan pass over the code to see which
functions are used, and which functions are available. Thus, in Rc66 the “Hello World” program becomes

void main(void){
 SendStr("\nHello World\n");
}

Note that the function SendStr() accomplishes the same as “printf,” that is, prints the given string. It is a part of
serial communications routines. SendStr() actually sends the characters out the serial port of the microcontroller.

11.8 References
An excellent textbook on C by two well-known and widely respected authors is:
The C Programming Language -- ANSI C Brian W. C. Kernighan & Dennis M. Ritchie, Prentice Hall, 1988

46

12.0 Rc66 SOFTWARE/HARDWARE EXPERIMENTS

12.1 The Hardware
The RIO-MP (also referred to as RIO or the RIO board) is a general purpose I/O board designed for use with
Rigel Corporations’ family of 8 and 16-bit embedded controllers. The development and implementation of
application-specific microcontroller based prototype circuits is significantly simplified with the RIO breadboard
area, the three terminal strips, and the user input/output devices (UIOD). These provide flexibility for connecting
prototyping components to the microcontroller lines, and for developing and debugging user-designed analog and
digital application circuits.

The RIO board in conjunction with the READS166 debugging features allows developing and interactively
debugging user code. Consider, for example, a software loop that repeatedly reads an ADC channel and breaks
out of the loop only when the value reaches a predefined threshold. By actually connecting the microcontroller
ADC input to a potentiometer and setting a break point immediately after the loop, one can debug the
hardware/software system much like it will appear in the final application. The program will run in READS166
and reach the breakpoint and stop only after one turns the potentiometer past the threshold value.

12.2 The Software
The READS166 C compiler has the capability to generate additional code necessary for interrupt service
routines. This allows testing software written in an interrupt-driven architecture. The READS166 debugger will
step through interrupt service routines once external (or internal) signals are received to trigger the interrupts.

In the following sections, we present sample code and hook up instructions. Such hook up is limited to
connecting the various microcontroller ports to UIODs. When appropriate, ribbon cables are used to connect
several signals to ports. For example, a four-wire ribbon cable is used to connect the LCD data bus to Port 2.0-
P2.3. This further simplifies hook up.

12.3 Simple Input/Output Experiments
These experiments illustrate simple bit-wise or word-wise inputs and outputs.

Using Single-Bit Inputs and Outputs
Polled Analog-to-Digital Conversion
Simple LCD Operation
Combining Modules: ADC with LCD
Stepper Motor Control

12.3.1 Using Single-Bit Inputs and Outputs
This is a simple example illustrating the use of the ports as simple input/outputs. The example also shows how
the simple serial communications routines may be used to display strings in the TTY window.

Hardware connections
Port P2.8 is used as an input and P2.9 as an output. Connect push button PB0 of the RIO board to P2.8 of the
microcontroller. Also connect P2.9 to LED0 of the RIO board.

Software
Load the project PIOPOLL. PIOPOLL consists of a main module and the serial communications utility module
S0.C from the archive project UTILITIES.

This experiment uses port bits P2.8 and P2.9, referred to in C as P2_0 and P2_1. Similarly, the corresponding
direction bits are referred to as DP2_0 and DP2_1. Note that upon reset, the microcontroller ports are configured
as inputs. We must set the direction control bit DP2_1 of the output bit P2.1 to configure it as an input. Once
the port directions are configured, the program enters a loop. The loop counter nCount is incremented each time
the push button PB0 is pressed and released. The output bit is toggled each time nCount is incremented, that is,

47

has the state of the output is 0 if nCount is even and 1 id nCount is odd. The LED connected to the output is lit
when the output bit is 0.

Note that the program spends quite a bit of time polling the input bit. Once pressed, the program must wait until
PB0 is released, and similarly, once released, until PB0 is pressed again. A more efficient approach is to use the
input as an interrupt source and write an interrupt service routine to toggle the output. This approach is
discussed in the next section.

Single step through the program and observe its operation.

12.3.2 Polled Analog-to-Digital Conversion
This experiment uses the function AdcPoll from the module ADCPOLLUTILITIES.C under the archive project
UTILITIES. ADCP8 is similar to the exercise given in section 11.3.1 above.

Hardware connections
Connect a few of the analog inputs of the microcontroller to the potentiometers POT0-POT8.

Software
Compile and run project ADCP8.

12.3.3 Simple LCD Operation
Liquid Crystal Displays (LCDs) are useful and powerful output devices since they allow plain text messages.
Interacting with an LCD requires initializing the LCD and sending it various commands and data bytes. In this
sense, an LCD is still an input/output device, one with a eight- or four-bit data interface and a 3-bit control
interface. The commands are sent to the LCD by setting the data bits, and the appropriate control bits: R/W to
write, and RS to command. Finally, the enable bit (E) is pulsed (momentarily made high. When using a 4-bit
data interface, this operation is repeated twice per byte. Data bytes are sent to the LCD in a similar fashion,
except that the RS line indicates data. Reading from the LCD is also similar, except that the control line R/W is
set to the Read state.

Using a LCD is greatly simplified when you use existing archive utility functions. These functions are organized in
module LCDUTILS.C in the archive project UTILITIES.

Hardware connections
We will use a 4-bit data bus. Connect the LCD data bus Data4-Data7 to the microcontroller ports P2.0 to P2.3
via a ribbon cable. Also connect the LCD signals RS, R/W, and E to the ports P2.4, P2.5, and P2.6,
respectively.

Software
The project LCD.PRJ is provided for this experiment. The example software simply makes use of the archive
functions LcdReset(), LcdClear(), LcdSendStr(), and LcdSendInt(). Try writing your own message on the LCD.

12.3.4 Combining Modules: ADC with LCD
This experiment is an exercise to combine a few archive utility functions to generate a powerful application. It is
intended as an extension to the simple LCD operation example given above.

Hardware
1. Connect the LCD to port 2 bits as discussed above in section 5.1.3.
2. Connect POT0 to ADC channel 0

Software
Write a program to read the ADC channel 0 and report its value on the LCD.

You may start with the project LCD used in section 11.3.3. First save the LCD project under a different name.
Then open the archive UTILITIES and drag the ADCPOLLUTILS into your project. Once the ADC utilities are
available, use AdcPoll(0) to read the ADC value and LcdSendInt() to display it.

48

The user may refer to the project LCDADC which displays the ADC value until it exceeds 1000.

12.3.5 Stepper Motor Control
Stepper motors are convenient devices to generate motion. Stepper motors are especially suited to cases where
the position control is required, such as in a disk drive head. From a control point of view, a stepper motor has 4
inputs which determine its step. The following generic pattern has 4 steps, which when completed corresponds
to a given angle of rotation. In order to produce motion of a given angular distance, the steps are simply
repeated the required amount.

Table 1. Full Step Sequence for Clockwise Rotation.

Step
Q1

P3.4,
Red

Q2
P3.5,
White

Q3
P3.6,

Orange

Q4
P3.7,
Blue

Equivalent
Nibble Value

1 ON OFF ON OFF 1010 = 10
2 ON OFF OFF ON 1001 = 9
3 OFF ON OFF ON 0101 = 5
4 OFF ON ON OFF 0110 = 6
1

(repeat)
ON OFF ON OFF 1010 = 10

In the table above, ON refers to an energized coil and OFF to an idle one. The RIO board has two stepper motor
drivers (ST ULN2066B) which switch the coil currents based on TTL inputs. There is a separate TTL input for
each coil, and an open collector-type output for each coil.

The table given above produces a full step of the motor each time the pattern is updated. It is possible to
achieve half steps by inserting intermediate patterns into full steps. These intermediate states energize only one
coil; the coil that is energized in the following and proceeding full steps.

Table 2. Half Step Sequence for Clockwise Rotation.

Step
Q1

P3.4,
Red

Q2
P3.5,
White

Q3
P3.6,

Orange

Q4
P3.7,
Blue

Equivalent
Nibble Value

1 ON OFF ON OFF 1010 = 10
2 ON OFF OFF OFF 1000 = 8
3 ON OFF OFF ON 1001 = 9
4 OFF OFF OFF ON 0001 = 1
5 OFF ON OFF ON 0101 = 5
6 OFF ON OFF OFF 0100 = 4
7 OFF ON ON OFF 0110 = 6
8 OFF OFF ON OFF 0010 = 2
1 ON OFF ON OFF 1010 = 10

Hardware connections
We will use the four bits of Port 3 (P3-4 to P3.7) to control the stepper motor. Connect these ports to the input of
the stepper motor driver marked “Stepper A.” Connect the common of the stepper motor driver to VCC. Connect
the outputs of the stepper motor driver to the stepper motor following the color codes in the tables above. Also
connect the common supply lines of the stepper motor (two brown wires) to VCC.
Software
The project STEPPER.PRJ is provided for this experiment. The program is exceedingly straightforward. A
simple loop is executed for a fixed number of steps. A new pattern is sent to the stepper motor at each software

49

loop step. A simple delay function StepDelay() is called between the steps. The duration of this delay function
determines the stepper motor speed.

Note that this project does not contain any of the previously used archive utility functions. You may add a
feature that displays the current step on the LCD by simply dragging and dropping the LCDUTILITIES.C module
from the UTILITIES archive. Then report the current step by simply using the LcdSendInt() function. The users
may refer to the project STEPLCD for an implementation.

You will note that using the simple delay function StepDelay() to determine motor speed is not the most accurate
approach if the foreground program needs to tackle other tasks such as displaying the step on the LCD. The
motor speed is reduced when the LCD steels the attention of the microcontroller. There is a better approach. A
timer may be set up to generate periodic interrupts. The interrupt service routine may then update the step. This
way, even if the foreground program is busy with other tasks, the CPU is interrupted by the higher priority
interrupt, and thus, the motor speed does not fluctuate. This approach is presented below, after interrupt routines
are discussed.

12.4 Interrupts and Real-Time Programming Architectures
Interrupt processing in C is a fundamental task of Rc66. Interrupts provide the necessary hardware elements to
satisfy the requirements of real-time applications.

Servicing Simple Interrupt Signals
Interrupt-Driven Analog-to-Digital Conversion
Accurate Timing Routines Using Timer Interrupts
Accurate Stepper Motor Speed Control Using Timer Interrupts

12.4.1 Servicing Simple Interrupt Signals
Revisit the experiment given in section 11.3.1. It was mentioned that the CPU spends much valuable cycles
polling the push button. A more efficient approach is now given.

Hardware connections
The hardware set up is the same as in the experiment given in section 11.3.1. Port P2.8 is used as an input and
P2.9 as an output. Connect push button PB0 of the RIO board to P2.8 of the microcontroller. Also connect P2.9
to LED0 of the RIO board.

Software
Load the project PIOINT. PIOINT consists of three modules, a main code module that is given below, and two
utility modules S0.C and INTUTILITIES.C from the archive project UTILITIES.

#define LIMIT 10

predef bit P2_8, // Port bit P2.8
 P2_9, // Port bit P2.9
 DP2_8, // Port direction bit DP2.8
 DP2_9; // Port direction bit DP2.9

predef unsigned int CCM2, CC8IC;

int nCount=0; // global variables are visible from Isr

main(void){
int nOldCount=0;

// --- set up port bits and directions ---
 DP2_8=0; // P2.8 is an input

50

 DP2_9=1; // P2.9 is an output
// --- send title string ---
 SendStr("\n\nInterrupt-driven I/O example\n\n");

// --- set up interrupt ---
 SetIntVec(0x60, Isr);
 CCM2&=0xFFF0;
 CCM2|=2; // CCMOD8=2 (interrupt on neg edge)
 CC8IC=0x4C; // enable CAPCOM8 interrupts - low priority
 IEN=1; // turn master interrupt enable on

// --- this loop repeats 'LIMIT' times as defined above
 do
 {
 P2_9=nCount%2; // toggle LED at each button press

 // --- display current count ---
 SendStr("\nCount : ");
 SendInt(nCount);

 // --- wait for the next interrupt ---
 while(nCount==nOldCount);
 nOldCount=nCount; // increment old count...
 } while(nCount<LIMIT);

// --- wrap up ---
 DP2_9=0; // P2.9 is an input
 IEN=0; // turn master interrupt enable off
 CC8IC=0; // disable CAPCOM8 interrupts

 SendStr("\n\n");
}
/* -------------------- */
void interrupt Isr(void){
 nCount++; // increment count
}

An interrupt-driven approach requires the following steps:

1. Writing the interrupt service routine
2. Setting the interrupt vector and interrupt priority
3. Enabling the interrupt
4. Optionally, initiating the process
5. Cleaning up after the process is completed.

Since interrupt service routines are called upon hardware signals, they cannot have arguments or return a value.
Consequently, any information exchange between the foreground code and interrupt service routines must be
accomplished by global variables that are visible to all parts of the program. In this example, the interrupt
service routine uses the global variable nCount to pass information to the foreground program.

The keyword interrupt instructs the compiler that the function must be written as an interrupt service routine.
This essentially means pushing and popping all relevant registers and returning with an RETI instruction. Rc66
also uses a different expression stack set up mechanism for interrupt service routines.

51

We use CAPCOM8 to generate interrupts on the falling edge of the input. Thus the lowest nibble of CCM2 is set
to 2. Each time the push button PB0 is pressed, and interrupt will be generated.

The 166 family of microcontrollers have dedicated interrupt vectors for the various hardware interrupts. A jump
instruction to the interrupt service routine must be placed at these predefined vectors. The function SetIntVec()
sets the interrupt vector. SetIntVec() takes two arguments: the vector and the address of the interrupt service
routine. Note that in this example, the P2.8 (CAPCOM8) interrupt has vector address 60h. Similarly, the
interrupt must be enabled. The CAPCOM interrupt control register CC8IC is initialized to 4Ch, which sets its
enable flag and assigns it an interrupt priority of 3 with group level 0. Although we enabled the CAPCOM0
interrupt, the CPU will not process interrupts unless the master interrupt enable flag IEN located in the PSW
register is set. Simply set IEN=1 to allow interrupts.

Upon termination, CAPCOM8 interrupts are disabled by clearing the CC8IE flag and giving it priority 0. This is
accomplished by setting CC8IC to 0. Similarly, the master interrupt enable flag IEN is cleared.

It is recommended that you place a break point in the interrupt service routine and run your program. Press the
push button and observe that the program stops in the interrupt service routine and increments the count. You
may observe the global variable values while the program is in the foreground loop or in the interrupt service
routine.

The support function SetIntVec() is placed in the archive UTILITIES in module INTUTIL.C. You may use this
function in your applications, or remove the debug suppression directive and single step through SetIntVec() to
inspect its operation.

12.4.2 Accurate Timing Routines Using Timer Interrupts
Accurate time keeping is the foundation of real-time programming. The 166 family of microcontrollers have a
wealth of timers which makes implementing a time base a simple task.

Hardware connections
No external hardware is needed for this experiment.

Software
Open the project TIMER. The project consists of three modules, a main code module and the now familiar
support utility modules S0.C and INTUTILITIES.C from the archive project UTILITIES.

The program is given below. The reload value of Timer0 forces overflows every millisecond, at which time an
interrupt is generated. The interrupt service routine for Timer0 updates the ticks (milliseconds) and the time in
seconds. The two words, MSEC and SECOND store the milliseconds and the seconds respectively.

// --- constants ---
// 0xF63C=10000h-2500
// reload value for overflows every 1 millisec
// with CPU clock=20MHz (50 nanosecond clock)
// and the prescalar set to 8. That is,
// 8*50*2500=1000000 nanoseconds or 1 millisecond
#define MSEC_COUNT 0xF63C

// --- global variables ---
unsigned int MSEC; // milliseconds, low word
unsigned int SECONDS; // seconds

predef unsigned int T0, T0REL, T01CON, T0IC, S0RIC;
predef unsigned bit T0R, S0RIR;

52

unsigned int nSeconds=0;

main(void){
 MSEC=0;
 SECONDS=0;

 SetIntVec(0x80, T0Isr); // assign interrupt service routine

 S0RIC=0;
 T0init(MSEC_COUNT); // initialize Timer0
 IEN=1; // enable interrupts

// --- start the main loop - press CTL-C to quit ---
 do
 {
 if(SECONDS>nSeconds)
 {
 nSeconds=SECONDS;
 SendStr("\nTime: ");
 SendInt(SECONDS);
 }
 } while(SECONDS<10);
 T0IC=0;
}

// ---
// subroutine T0init initializes Timer0
// input : timer 0 reload value
// output : none
// ---
void T0init(int nReload){

T0REL=nReload; // reload value determines the period
T0=nReload; // start timer with reload value

// --- set up the timer control register ---
 T01CON=0; // prescalar=8, Timer0 off
// T01CON=7; // prescalar= 1024, Timer0 off
 T0IC=0x45; // enable T0 interrupts - priority
 // level=1, group=1

// --- initialize variables ---
 MSEC=0; // initialize ticks low word
 SECONDS=0; // initialize seconds

// --- start timer ------------
 T0R=1; // start timer
}

// ---
// subroutine T0Isr Timer0 Interrupt Service Routine
//
// called upon Timer0 overflows

53

// ---
void interrupt T0Isr(void){
int i;
 MSEC++;
 if(MSEC>=1000)
 {
 MSEC=0;
 SECONDS++;
 }
}

// ---
// end of program...

The foreground loop polls SECONDS and displays its value every time it changes. Note that the timing is
extremely accurate (as accurate as the 40MHz crystal oscillator).

Although the structure of this program is no different than the other examples with interrupt service routines, it
requires a few extra steps to set up the timer and the related global variables. These steps are placed in a
separate function, T0Init(), which takes the reload value as an argument and starts Timer T0. Also note that the
interrupt service routine is a lot longer than the one or two line ones given in previous examples. Although one
should endeavor to write the interrupt service routines as short as possible, the one used in this example by no
means pushes the capabilities of the microcontroller.

12.4.3 Accurate Stepper Motor Speed Control Using Timer Interrupts
It was mentioned in section 11.3.5 that the foreground task of displaying the current step places demands on the
CPU which results in a fluctuating stepper motor speed. With an interrupt-driven time base, we may now tackle
the problem of generating smooth stepper motor speeds even in the event of foreground tasks.

Hardware connections
The hardware set up is the same as given in section 11.3.5. We use the four bits of Port 3 (P3-4 to P3.7) to
control the stepper motor. Connect these ports to the input of the stepper motor driver marked “Stepper A.”
Connect the common of the stepper motor driver to VCC. Connect the outputs of the stepper motor driver to the
stepper motor following the color codes in the tables above. Also connect the common supply lines of the
stepper motor (two brown wires) to VCC.

Software
Open the project TIMEDSTEPPER.PRJ. This project builds upon the previous example TIMER.PRJ. Stepper
motor functions HalfStep() and FullStep() are included along with the two functions StepperReset() and
StepperOff() to set up the corresponding port bits.

This project differs from the previous timer project in its interrupt service routine. The interrupt service routine is
given below. Rather than keeping time, the focus here is to increment the motor step at regular intervals,
determined by the constant STEPPERIOD. In the example, STEPPERIOD is set to 10 milliseconds.

void interrupt T0Isr(void){
int i;
 MSEC++;
 if(MSEC>=STEPPERIOD)
 {
 MSEC=0;
 FullStep(ngStep++);
 }
}

54

The foreground loop simply waits until all 1000 steps are completed. This should take exactly 10 seconds. Run
the program and then add the LCD functions to display the current step. Note that the LCD operation should not
cause motor speed fluctuations. The user may review the project TIMEDLCDSTEPPER for an implementation.

12.4.4 Interrupt-Driven Analog-to-Digital Conversion
Interrupt service routines are the key to real-time software architectures. Real-time refers to prompt actions
taken upon receiving external signals. Of course, a real-time system should not be overloaded to the point that it
becomes too busy to react to such external signals.

Hardware connections
Connect POT0 to the microcontroller ADC channel 0.

Software
The project ADCISR is given for this experiment. Almost all interrupt-driven software applications will follow a
similar structure. The main program is presented below illustrates this structure.

// --- global variables are visible from ISRs ---
int nADC, bFlag;

main(void){
int nCount;

 SetIntVec(0xA0, AdcIsr); // assign interrupt service routine
 ADCIC=0x4C; // enable ADC interrupts - low priority
 IEN=1; // enable interrupts

 bFlag=0;
 nCount=0;
 ADCON=0x80; // start ADC channel 0

 do
 {
 while(!bFlag);
 bFlag=0;
 SendStr("\n ADC Channel 0: ");
 SendInt(nADC);
 nCount++;
 ADCON=0x80; // start ADC channel 0
 } while(nCount<10);

 IEN=0; // disable interrupts
 ADCIC=0; // disable ADC interrupts
}

// ---
// Analog-to-Digital Conversion Interrupt Service Routine
// ---
void interrupt AdcIsr(void){
 nADC=ADDAT; // copy ADC value
 bFlag=1; // signal ADC completion
}
// ---

55

The interrupt service routine uses the global variable nADC to return the conversion value. The synchronization
of the foreground program to the interrupt service routine is also accomplished by global variables. In this
example the Boolean flag bFlag is used to signal that the ADC conversion is completed. The foreground loop
pools the flag and uses the ADC value only when the flag is set. The foreground loop clears the flag before it
requests another conversion by writing 80h to ADCON.

The ADC completion interrupt has vector address A0h. Similarly, the interrupt must be enabled. The ADC
interrupt control register ADCIC is initialized to 4Ch, which sets its enable flag and assigns it an interrupt priority
of 3 with group level 0. An ADC conversion is initiated by writing 80h to ADCON. This starts converting channel
0 in a fixed single channel conversion mode. Each time a conversion is needed, the value 80h is written to
ADCON.

Upon termination, the ADC interrupts are disabled by clearing the ADCIE flag and giving it priority 0. This is
accomplished by setting ADCIC to 0. Similarly, the master interrupt enable flag IEN is cleared.

It is recommended that you single step through the program and observe that the interrupt service routine is
invoked following ADC conversions. You may observe the global variable values while the program is in the
foreground loop or in the interrupt service routine.

APPENDICES

i

APPENDIX A: READS166 3.1 UPDATES
Reads166 V3.10 introduces the following updated features over version 3.0x.

1. A completely rewritten Integrated Development Environment (IDE) and user interface.
2. A more streamlined C compiler with (4-byte) floating point and long integer support. Some support for C

structures, unions, and enumerated types.
3. ST10F262/ST10F272 Multiply-Accumulate (MAC) instructions are added to the assembler.

Bug Reports:
Please report the bugs in this version to Rigel Corporation. The preferred method is by e-mail to
"tech@rigelcorp.com"

A.1 Project Formats
Reads V3.10 project database is different from the V3.00 database. The IDE will open Reads166 V3.00 projects
and convert to the new format. The old projects are saved in a subdirectory in case you would like to revert
back.

A.2 Hardware Configuration
ReadsV3.00 attached hardware configuration information to individual projects. Although this allows the same
code to be implemented in two different projects for, say, the 166 and 167 processors, in some cases, it also lead
to ambiguities. Reads166 V3.10 views the hardware configuration as global information, identical across all
projects. Once the hardware configuration is set from the menu, it is applied to all projects as well as to the
compilation of projectless source code.

A.3 User Configurable Syntax Highlighting
You may add your keywords to the list to be highlighted. Activate the editor and look under the Edit / Colors
submenu.

A.4 Matching Parentheses
Place the cursor next to a parentheses in the editor. Press the right mouse button and select the menu item
"Find Matching {" or use the hotkey ALT-P.

A.5 Search Across Files
This "grep-like" utility scans the specified directories for the occurrences of given keywords. Look under the Tools
menu for Keyword Search.

A.6 Drag-and-Drop
Besides transferring modules between projects as before, the drag-and-drop feature now supports source files to
be dragged from the other utilities, such as the Windows Explorer or the Windows Find dialogs into the project.

A.7 Project Notes
You may include files into the project but exclude them from build. This is a convenient way to attach text files
to projects and keep notes. Check the "Exclude from build" box under the module options.

A.8 Variable and SFR Watches
The new watches have different tabs for different lists of variables. One of the tabs lets you create a set of
selected variables. Use the right mouse button for local options, such as decimal or HEX display.

A.9 Floating-Point Numbers
Look at the projects Sin01, and Factorial_Float for examples.

ii

A.10 Long Integers
Look at the project Factorial_LongInt for an example.

A.11 MAC Instructions
Enable the MAC262.272 instructions using the checkbox in the "Assembly Options" dialog. See the project
MAC262 for examples.

iii

APPENDIX B: READS166 MAIN MENU COMMANDS
The Main Menu contains the higher-level options such as projects, modules, or tools.
The major tasks are delegated to the READS166 “Tools” which includes editors, host-to-board communications
subsystems and code generators. Tools are distinguished by their own environments including sub-menus and
accelerator keys. Tools may be minimized when not used or simply closed until needed again.

B.1 Project
Projects are collections of source code modules that are compiled as a whole. Use the project menu to create
“New” projects, “Open” existing projects, “Close” projects, select project “Options”, and save projects. The
“Exit” command is also under the menu “Project” option.

The use of
projects is
optional in
READS166. It is
meant to simplify
the bookkeeping
of the various
components of
larger code. For
short programs, it
is often more
practical to simply
write the code in
the text editor and
compile it without
first creating a
project. (The
demo version has
limitations on the
types and sizes of
projects.)

The Project
Window is the
space just under
the Main Menu. If
a project is currently open, a list of modules of the project is displayed. You may use the scroll bars to view the
module list.

B.2 Module
A module is a single file that belongs to a project. Typically modules are either assembly language subroutines
or C language functions. You may copy modules from one project to another, or share modules in different
projects. For example, you may copy a previously developed module from an archive project to an executable
project by simply dragging its icon from one project window to the other. A new feature of READS166 Version 3
is that you may combine C and assembly modules in one project to decrease code size and execution time.
You may set “Module Properties”, “Add Module”, “Edit Module”, “Save”, “Save All”, or “Delete” modules of
the current project using the commands under the “Module” option. The Add Module command allows you write
and include new modules to a project, or lets you select assembly or C programs that are currently in an archive
project to be included in the current project. There is also a selection called “Code Wizard” in the module
options. The Code Wizard opens to show a C Wizard or an ASM Wizard. Both of these wizards generate code
automatically for your project. READS166 does not require the use of modules.

iv

B.3 Compile
The “Compile” menu commands allow you to “Toggle Mode” between the Build Mode and Run / Debug Mode.
In the Build Mode projects or modules are compiled. In the Run / Debug Mode the built projects are downloaded
to the board. “Build” compiles the current project, or compiles a single module depending on which is
highlighted in the Project Window. If the editor contains a file, this current file is compiled. “Build and
Download” compiles the highlighted project and downloads it to the target board.

“Clear Breakpoints” removes all breakpoints from your selected program. “Toggle Breakpoints” allows you to
turn on or off selected breakpoints. The “Single Step” command allows you to step through the program,
statement by statement, after it has been downloaded to the board. The “Enable Animation” command
animates the singlestep feature. Once the singlestep command is issued the enable animation automatically
continues to singlestep from statement to statement without pushing buttons. “Bootstrap”, “Bootstrap and
Download Monitor”, “Download Hex”, “Read Debug Files” and “Delete Debug Files” are basic features that
implement the stated commands. The “Run” command runs the downloaded program on the target board. The
Bootstrap selection bootstraps the board preparing it for downloading files.

B.4 View
The “View” menu commands allow the user to watch the variables and breakpoints as the program is debugged.
The “Watches” menu command also allows you to select the variables that you wish to watch.

v

B.5 Tools
Tools are the powerful subsystems that let you carry out complicated tasks. Tools usually have their own menus
and hot-key combinations. Currently the following tools are available “TTY”, “Compiler/ Assembler”,
“Project”, “Compile Errors”, “Hardware Configuration”, “Keyword Search”, “Close All Projects”, and
“Close All Tools”.

vi

B.5.1 TTY
The TTY Window encapsulates all host-to-board communications. It has its own menu to set the
communications parameters, to bootstrap the board, and to download compiled programs into the RAM of the
board.

B.5.2 Compiler/ Assembler
The Compiler / Assembler command opens the C compiler window which allows you to select between the C
compiler and the assembler. It also allows you to set the C and assembly language parameters from the Tools |
Compiler/ Assembler | Options menu.

B.5.3 Project
The Project selection toggles the Project window open or closed.

B.5.4 Compile Errors
Selecting the Compile Errors command toggles the READS Error Dialog window off and on.

B.5.5 Hardware Configuration
The Hardware Configuration command opens a window where you may set the configuration of the software
according to the hardware platform you are working on. By using the FIND button you can easily select the
correct hardware which will then set up the rest of the parameters listed in the window.

B.6 Options
There are four commands in the “Options” menu. The “READS166 Option”, allows you to select time-outs and
whether to terminate the compiler after use. The “TTY Options” allow you to select the COMM port, Baud rate,
and TTY Time-outs. “Hardware Options” allow you to select the hardware configuration. The fourth option is for
use when you are not using projects for code development. The “Build Options” opens up a submenu to select
compiler or assembly options available when not using projects.

vii

B.7 Window
The Window command allows you to select how the READS166 windows will appear.

B.8 Help
This command invokes the READS166 Help system.

i

APPENDIX C: READS EDITOR

C.1 READS166 Editor Overview
The Reads Editor implements a standard text editor with menus and controls familiar to most Windows
applications. The menu items and the actions taken by them are described below.

The Reads Editor is not a stand-alone application. It is a part of the Integrated Development Environment (IDE).
The editor may be turned on and off from the Tools menu or by the hot key combination Ctrl+E. In some cases,
the IDE automatically opens the editor, for example, to display a break point during a debug session.

The Reads Editor is more than just a text editor. Its behavior depends on the current state of the IDE as listed
below.

IDE State Reads Editor Tasks
Writing code Text editor, keyword help
Compiling/assembling Show errors
Debugging Show current step

In addition, the Reads Editor supports a local popup menu, activated by clicking the mouse right button within the
editor. All editor tasks and links, such as building the current project or clearing all breakpoints during a debug
session may be initiated by selecting the corresponding popup menu item.

C.2 File Menu
This menu groups the operations which deal with storing, retrieving or printing files. It also keeps a history list of
the last few files opened, so that they may quickly be reopened.

New Ctrl+N Opens a new file.
Open Ctrl+) Opens an existing file.
Close Closes the current file.
Save Ctrl+S Saves the current file to disk.
Save As Saves the current file under a different file name.
Print Ctrl+P Prints the current file.
Print Preview Displays the page as it will be printed.
Printer Setup Selects printer options.
Exit Terminates the editor.

C.2.1 Edit Menu
The editor uses the clipboard to facilitate copying segments of text from one place to another. Such text is first
tagged by highlighting it. You may highlight text by dragging the mouse while keeping the left button down, or
from the keyboard, by using the arrow keys while holding the shift key down.

Cut Ctrl+X Removes the highlighted text from the file and places it into the
clipboard.

Copy Ctrl+C Copies the highlighted text into the clipboard without removing it from
the file.

Paste Ctrl+V Places the contents of the clipboard into the file at the current carret
position.

Undo Ctrl+Z Restores the document to its state immediately before the last edit
command.

Select All Ctrl+A Selects the contents of the entire file.

C.2.2 View
You may change the appearance of the editor by the following commands.

ii

Toolbar Displays a set of icons at the top of the editor window. These are shortcuts to
the more often used menu commands. Currently the toolbar includes the
following shortcuts: File New, File Open, File Save, Cut, Copy, Paste, Print,
and Help.

Status Bar Displays a bar at the bottom of the editor window that shows the current line
and column. It also displays the status of the following keys: Overwrite,
CapsLock, and NumLock.

Status Ribbon The status ribbon is an alternative form of the status bar.
8 pt Selects the smallest fonts.
10 pt Selects the medium size fonts.
12 pt Selects the largest size fonts.

C.2.3 Window
Cascade Arranges all editor windows in a cascade fashion.
Tile Tiles all editor windows. This is especially usefult to view two files

simultaneously.
Arrange Icons You may arrange the minimized edit windows neatly by this command.

C.2.4 Navigate
Navigation commands move the caret within the text file. Although many of the navigation commands are
available from the menu, in most cases, the hot key combinations are more convenient. For example, use
Ctrl+Home to bring the caret to the beginning of the file.

In addition to the menu commands listed below, several keys (see Miscellaneous Edit and Navigation Keys)
move the caret, sometimes while performing another operation. For example, the backspace key moves the
caret backwards one character while erasing that character.

Search Moves the caret to the next occurrence of the given string.
Search Forward Repeats the last search in the forward direction.
Search Backward Repeats the last search in the backward direction.
Replace Replaces the next occurrence of the search string with another

string.
Beginning of Line Home Moves the caret to the beginning of the line.
End of Line End Moves the caret to the end of the line.
Beginning of File Ctrl+Home Moves the caret to the beginning of the file.
End of File Ctrl+End Moves the caret to the end of the file.
Next Word Ctrl+Right Moves the caret to the next word.
Previous Word Ctrl+Left Moves the caret to the previous word.
Jump Jumps to a given line number.

C.3 Miscellaneous Edit and Navigation Keys
Up Arrow Moves caret to the previous line.
Down Arrow Moves caret to the next line.
Right Arrow Moves caret to the next character.
Left Arrow Moves caret to the previous character.
PgUp Moves caret to the previous page.
PgDn Moves caret to the next page.
Del Deletes the next character.
Backspace Deletes the previous character.

C.4 Highlighting Text
Highlighting text is the most fundamental operation in using the edit commands. There are various shortcuts to
highlighting text, also referred to as selecting text.

C.4.1 Highlighting the Current Word
Position the mouse cursor on the word to be highlighted and double click any mouse button.

iii

C.4.2 Highlighting a Block of Characters
Using the mouse
Position the mouse cursor on the first character of the block and depress the left button. While the left button is
depressed, drag the mouse to the last character of the block and release the mouse.

Using the Keyboard
Position the caret on the first character of the block and depress the shift key. Now, use the arrow keys to
position the caret on the last character of the block and release the shift key. Normally, you can use any position
key in combination with the shift key to advance or shrink the highlighted area.

Normally a function that utilizes a character block also erases the highlighting. To explicitly erase the
highlighting click the mouse one more time or press any of the positioning keys.

C.4.3 Highlighting a Block of Lines
Using the mouse
Position the mouse cursor at any position on the first line of the block and depress the right button. While the
right button is depressed, drag the mouse to the last line of the block and release the mouse.

Using the Keyboard
Position the caret at any position on the first line of the block and hit the F8 function key. Use the Up and Down
arrow keys to position the caret on the last line and hit F8 again.

Normally a function that utilizes a line block also erases the highlighting. To explicitly erase the highlighting,
click the mouse one more time or press one of the arrow keys.

