

R-FLIC
USER'S GUIDE

Version 1.4
March 20, 2002

RIGEL CORPORATION
PO Box 90040, Gainesville, FL 32607

Phone (352) 373-4629, FAX (352) 373-1786
www.rigelcorp.com, tech@rigelcorp.com

(C) 2002 by Rigel Corporation.
Legal Notice:
All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of Rigel Corporation.

The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its compatibles. IBM PC
is a trademark of International Business Machines, Inc. MS Windows is a trademark of Microsoft, Inc.

Information in this document is provided solely to enable use of Rigel products. Rigel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Rigel products except as
provide in Rigel’s Customer Agreement for such products.

Rigel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained herein.
Rigel retains the right to make changes to these specifications at any time without notice.

Contact Rigel Corporation or your Distributor to obtain the latest specifications before placing your order.
Documentation is coded with version number, and a date. The version number is the version of the board (V1.4),
and the date (JUNE1998) refers to the date the document was released.

We welcome any and all comments about our products.

Rigel Corporation’s Software License Agreement
This Software License Agreement ("Agreement") covers all software products copyrighted to Rigel Corporation,

including but not limited to: Reads51, rLib51, RbHost, RitaBrowser, FLASH, rChpSim, Reads166, and
rFLI.

This Agreement is between an individual user or a single entity and Rigel Corporation. It applies to all Rigel
Corporation software products. These Products ("Products") includes computer software and associated
electronic media or documentation "online" or otherwise.

Our software, help files, examples, and related text files may be used without fee by students, faculty and staff
of academic institutions and by individuals for non-commercial use. For distribution rights and all other
users, including corporate use, please contact:
Rigel Corporation, PO Box 90040, Gainesville, FL 32607
or e-mail tech@rigelcorp.com

Terms and Conditions of the Agreement

1. These Products are protected by copyright laws, intellectual property laws, and international treaties.
Rigel Corporation owns the title, copyright, and all other intellectual property rights in these Products.
We grant you a personal, non-transferable, and non-exclusive license to use the Products. These
Products are not transferred to you, given away to you or sold to you.

 Non-commercial use: These Products are licensed to you free of charge.

 Commercial use: You must contact Rigel Corporation to find out if a licensing fee applies before using
these Products.

2. You may install and use an unlimited number of copies of these Products.

3. You may store copies of these Products on a storage device or a network for your own use.

4. You may not reproduce and distribute these Products to other parties by electronic means or over
computer or communication networks. You may not transfer these Products to a third party. You may not
rent, lease, or lend these Products.

5. You may not modify, disassemble, reverse engineer, or translate these Products.

6. These Products are provided by Rigel Corporation "as is" with all faults.

7. In no event shall Rigel Corporation be liable for any damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, loss of business information, or other
pecuniary loss) arising out of the use of or inability to use the Product, even if Rigel Corporation has been
advised of the possibility of such damages. Because some states do not allow the exclusion or limitations
of consequential or incidental damages, the above limitations may not apply to you.

8. Rigel Corporation makes no claims as to the applicability or suitability of these Products to your particular
use, application, or implementation.

9. Rigel Corporation reserves all rights not expressly granted to you in this Agreement.

10 If you do not abide by or violate the terms and conditions of this Agreement, without prejudice to any other
rights, Rigel Corporation may cancel this Agreement. If Rigel Corporation cancels this Agreement; you
must remove and destroy all copies of these Products.

11. If you acquired this Product in the United States of America, this Agreement is governed by the laws of
the Great State of Florida. If this Product was acquired outside the United States of America all pertinent
international treaties apply.

HARDWARE WARRANTY
Limited Warranty. Rigel Corporation warrants, for a period of sixty (60) days from your receipt, that READS
software, RROS, hardware assembled boards and hardware unassembled components shall be free of
substantial errors or defects in material and workmanship which will materially interfere with the proper operation
of the items purchased. If you believe such an error or defect exists, please call Rigel Corporation at (352) 373-
4629 to see whether such error or defect may be corrected, prior to returning items to Rigel Corporation. Rigel
Corporation will repair or replace, at its sole discretion, any defective items, at no cost to you, and the foregoing
shall constitute your sole and exclusive remedy in the event of any defects in material or workmanship. Although
Rigel Corporation warranty covers 60 days, Rigel shall not be responsible for malfunctions due to customer
errors, this includes but is not limited to, errors in connecting the board to power or external circuitry.

THE LIMITED WARRANTIES SET FORTH HEREIN ARE IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

YOU ASSUME ALL RISKS AND LIABILITY FROM OPERATION OF ITEMS PURCHASED AND RIGEL
CORPORATION SHALL IN NO EVENT BE LIABLE FOR DAMAGES CAUSED BY USE OR PERFORMANCE,
FOR LOSS PROFITS, PERSONAL INJURY OR FOR ANY OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES. RIGEL CORPORATION'S LIABILITY SHALL NOT EXCEED THE COST OF REPAIR OR
REPLACEMENT OF DEFECTIVE ITEMS.

IF THE FOREGOING LIMITATIONS ON LIABILITY ARE UNACCEPTABLE TO YOU, YOU SHOULD RETURN
ALL ITEMS PURCHASED TO RIGEL CORPORATION PRIOR TO USE.

Return Policy. This policy applies only when product purchased directly from Rigel Corporation. If you are not
satisfied with the items purchased, prior to usage, you may return them to Rigel Corporation within thirty (30) days
of your receipt of same and receive a full refund from Rigel Corporation. You will be responsible for shipping
costs. Please call (352) 373-4629 prior to shipping.

Repair Policy. If you encounter problems with your board or software after the 60 day warranty period, please
call Rigel Corporation at (352) 373-4629 or email tech@rigelcorp.com for advice and instruction.

Rigel Corporation will test and attempt to repair any board. You will be responsible for shipping costs and repair
fees. If you send a detailed report of the problems you encountered while operating the board, Rigel Corporation
will inspect and test your board to determine what the problem is free of charge. Rigel Corporation will then
contact you with an estimated repair bill. You will have the choice of having the board fixed or returned to you as
is. Rigel Corporation charges repair fees based on an hourly rate of $50.00. Any parts that need to be replaced
will be charged as separate items. Although Rigel Corporation will test and repair any board, it shall not be
responsible for malfunctions due to customer errors, this includes but is not limited to, errors in connecting the
board to power or external circuitry.

 Board Kit. If you are purchasing a board kit, you are assumed to have the skill and knowledge necessary to
properly assemble same. Please inspect all components and review accompanying instructions. If instructions
are unclear, please return the kit unassembled for a full refund or, if you prefer, Rigel Corporation will send you an
assembled and tested board and bill you the price difference. You shall be responsible for shipping costs. The
foregoing shall apply only where the kit is unassembled. In the event the kit is partially assembled, a refund will
not be available, however, Rigel Corporation can, upon request, complete assembly for a fee based on an hourly
rate of $50.00. Although Rigel Corporation will replace any defective parts, it shall not be responsible for
malfunctions due to errors in assembly. If you encounter problems with assembly, please call Rigel Corporation
at (352) 373-4629 for advice and instruction. In the event a problem cannot be resolved by telephone, Rigel
Corporation will perform repair work, upon request, at the foregoing rate of $50.00 per hour.

 Governing Law. This agreement and all rights of the respective parties shall be governed by the laws of the
State of Florida.

TABLE OF CONTENT
1 OVERVIEW..1

1.1 BASIC FEATURES...1
1.2 HARDWARE FEATURES ..1
1.3 READS166 OVERVIEW...2
1.4 RFLI UTILITY SOFTWARE ...2
1.5 PARTS LIST ...3

2 SOFTWARE ..4
2.1 SYSTEM REQUIREMENTS..4
2.2 SOFTWARE INSTALLATION, READS166..4
2.3 SOFTWARE INSTALLATION, RFLI SOFTWARE UTILITY...4
2.4 THIRD PARTY SOFTWARE...4

3 START-UP...5
3.1 CONNECTIONS, JUMPER SETTINGS...5
3.2 SOFTWARE INITIALIZATION ...5
3.3 SERIAL NUMBER..5

3.3.1 Demo Version ...5
3.3.2 Full Version ...6

3.4 CONFIGURING READS AND INITIATING HOST-TO-BOARD COMMUNICATIONS ..6
3.5 BOOTSTRAPPING ...6
3.6 VERIFYING THAT THE MONITOR IS LOADED..7
3.7 TROUBLESHOOTING ...7

3.7.1 Hardware Set-up...7
3.7.2 Software Set-up ..7
3.7.3 PC set-up ...8

4 OPERATING NOTES ..9
4.1 POWER ...9

4.1.1 JP16, Power Jack ...9
4.1.2 JP15, Terminal Block..9
4.1.3 JP6, 5-Volt Terminal Block ...9

4.2 SERIAL PORT 0...9
4.3 SERIAL PORT 1..9
4.4 PUSH BUTTONS...9

4.4.1 Reset (SW1) ..9
4.4.2 NMI (SW2) ...10

4.5 LEDS..10
4.6 CAN TERMINAL BLOCK..10

4.6.1 CAN Physical Layer Considerations...10
4.7 POTENTIOMETER R3..10

5 JUMPER CONFIGURATIONS..11
5.1 JP1 (RESET OPTIONS) ..11

5.1.1 P0.4...11
5.1.2 P0.7 and P0.6 ...11
5.1.3 P0.8...11
5.1.4 P0.9 and P0.10 ...11
5.1.5 P0.11 and P0.12 ...11

5.2 SW3 AND SW4 (RAM AND ROM CHIP SELECT ASSIGNMENT)..12
5.2.1 SW3, External FLASH ROM...12
5.2.2 SW4, RAM ..12

5.3 SW5 (RAM SIZE) ...12
5.4 INTERNAL FLASH PROGRAMMING JUMPERS...12

5.4.1 JP13, VPPON ...12
5.4.2 JP21, VPP Options ...12

5.5 JP14, EA# ..13
5.6 J6 AND J7, CANTXD, CANRXD JUMPERS ...13
5.7 ANALOG-TO-DIGITAL CONVERTER REFERENCE JUMPERS ..13
5.8 JP2 ..13

6 MEMORY BLOCK OPTIONS..14
6.1 RAM MEMORY OPTIONS..14
6.2 ROM MEMORY OPTIONS ...14

6.2.1 Program Settings for Running out of External EEPROM ...14
6.2.2 Programming the External EEPROM ...14
6.2.3 Running Programs from External EEPROM...15

6.3 ON-CHIP FLASH MEMORY..15
6.3.1 Program Settings for Running out of Internal FLASH...15
6.3.2 Programming the Internal FLASH...16
6.3.3 Running a Program from Internal FLASH...17

6.4 ALTERNATE MEMORY MAPS ...17
6.5 DEFAULT MEMORY SETTING...17

7 HEADERS ...18
7.1 JP3 - SYSTEM BUS HEADER ..18
7.2 JP4 - INPUT/OUTPUT HEADER ...19
7.3 JP5 - EXTRA INPUT/OUTPUT HEADER..20
7.4 SERIAL PORT HEADERS ...20

7.4.1 J3 (S0) ..20
7.4.2 J4, J8 (SSC)...20

8 SYSTEM PROGRAMMING...21
8.1 THE SYSCON REGISTER..21
8.2 THE BUSCON0 AND BUSCON1 REGISTERS ..21
8.3 THE ADDRSEL1 REGISTER ..21

9 BOOTSTRAPPING..23

10 THE MONITOR PROGRAMS ...25
10.1 MINIMAL MONITOR...25
10.2 MON167 MONITOR...26

11 READS166 VERSION 3.1 ...28
11.1 OVERVIEW ..28
11.2 READS166 V3.00 CONCEPTS ..28

11.2.1 Project ...28
Executable Projects ...29
Archive Projects ...29

11.2.2 Module ..29
12 PARTS LIST ..30

12.1 ASSEMBLY PARTS LIST ..30
12.2 PART CROSS REFERENCE, DECEMBER 2000..32

13 TOP OVERLAY AND SCHEMATICS ...35

1 OVERVIEW
The R-FLIC is an industrial board designed to accept multiple processors in the Infineon and ST
Microelectronics 167 family. The board works with the following processors: the C167LM, C167SR,
C167CR-LM, ST10R167, and the ST10F168, which have both CAN and 256K FLASH capabilities. The
R-FLIC board comes with two software programs written by Rigel Corporation, READS166 and the rFLI
Utility Software.

1.1 Basic Features
The R-FLIC board is a 6 layer industrial board with separate VCC and GND planes. The microcontroller is
run with a 16-bit nonmultiplexed data bus and a nonmultiplexed address bus. The various configuration
options are set by jumpers that determine the reset options of the 167. Most notably, activation of the
bootstrap loader, the width of the address bus, and the number of chip select lines are determined by
these jumpers.

There are three banks of memory on the board when populated with the ST10F168 processor, RAM,
ROM, and 256K internal FLASH. The RAM and ROM banks may hold up to 1 megabyte of memory
each, for a total of up to 2 megabytes of external memory. Memory banks are controlled by the chip
select signals CS0# and CS1# of the 167. The chip select lines are jumper configurable to allow for
maximum flexibility when using the R-FLIC board. The default configuration is the 64K/256K RAM and
no ROM mode. In this mode, the monitor program or user program is downloaded to RAM using the 167
bootstrap feature.

The R-FLIC contains the CAN interface chip, the 82C250, for immediate hook up to a CAN network. The
R-FLIC has the same standard operating modes and hardware features as the RMB167-CRI. The R-
FLIC is designed to run each processor at its fastest speed with no wait states. The R-FLIC is compatible
with all of our other 16-bit boards. The board size, the location and function of all headers are kept the
same.

Notable Features of the board include:

• Industrial strength shielding: The PCB is a six-layered board with separate VCC and GND
planes designed to operate in noisy industrial environments.

• FLASH Memory Capability: The board uses up to 1MB of 5-volt external FLASH EEPROM.
When populated with the ST10F168, there is an additional 256K internal FLASH that may be
programmed on-board.

• External bus system on a header. The R-FLIC has a 2 x 16 pin header for selection of the
operating modes, which are determined during reset by the state of Port 0 bits.

• Chip Select lines used for memory mapping. Uses CS0# and CS1# to interface to
external memory, allowing greater flexibility for memory mapping.

• The HiTEX / HiTOOLS ICE connector designed into the board for those needing emulation
capabilities.

• On Board 5 Volt Power Regulator.
• On Board 12 volt Power Regulator.
• CAN physical layer built-in to the board.

1.2 Hardware Features

• 167 Processor (ST Microelectronics, Infineon)
 Bootstrap loading feature
 256K internal FLASH (ST10F168)
 Built-in CAN interface
 One serial port
 One high speed synchronous serial channel
 Five 16 bit timers
 Watchdog timer
 4K on chip RAM memory
 20MHz internal system clock (5MHz clock with internal phase-lock loop)

2

 16 Channel 10-bit A-to-D converter with enhanced operation modes
 32 channels CAPture / COMpare unit
 8 channels PEC (data transfer channel)
 4 channels PWM

• Serial port uses a RS232 driver, terminates at DB-9 connector and a 3-post connector
• 111 bits of general-purpose inputs/outputs
• Chip Select lines used for memory mapping
• Accommodates 64KB - 1MB of SRAM (256K installed)
• Accommodates 256KB - 1MB of FLASH memory (not installed)
• FLASH parts programmable on-board
• Push buttons for RESET# and NMI# (non-maskable interrupt)
• CAN physical layer built into the board
• IC's populated in gold-plated machine screw sockets
• Power on LED
• 12-volt ready LED
• Flexible and embeddable 6 layer industrial board
• Board size 4"x6 ½"
• Power consumption is less than 175mA running at 20MHz
• Mounting holes in corners

1.3 READS166 Overview
READS166, version 3.0x, is Rigel Corporation’s Integrated Development Environment for the ST
Microelectronics 16-bit processors. READS166 includes an editor, a host-to-board communications
system, an assembler, and a C compiler. READS166 is completely rewritten in native 32-bit code to run
on Windows95 and WindowsNT. READS166 includes a sophisticated project management system to
simplify code reusability and version control. The C compiler is rewritten to support a full debugger. The
debugger allows you to step through your code with breakpoints and variable watches as the compiled
code runs on the target board, similar to the operation of an in-circuit emulator.

RMON166 - The READS166 monitor program
RMON 166 is downloaded after bootstrapping (or it may be placed into ROM) and supports basic
memory and port functions. RMON166 allows downloading and running applications programs. The
complete source code for user modifications or upgrades is included on disk.

Ra66 - The READS166 Assembler
Ra66 is an assembler for the C166 family of controllers. It is a multi-pass absolute assembler which
generates HEX code directly from assembly source code. The assembler in the demo version of
READS166 limits the size of code to about 8K.

Rc66 - The READS166 C Compiler
Rc66 is a C Compiler for the C166 family of processors. It compiles code for the tiny memory model
which fully resides in the first segment of memory. Rc66 is a designed as a low-cost C compiler which
provides a quick development cycle for simpler applications which do not need more than 64K of code, or
the use of standard C libraries. Rc66 implements a subset of ANSI C. Rc66 works in conjunction with
Ra66: first an assembly language program is generated from the C source, then a HEX file is generated.
Currently, structures, unions, enumerated types, and the typedef directive are not implemented. The C-
compiler in the demo version of READS166 limits the size of code to about 8K.

1.4 rFLI Utility Software
rFLI is a utility program used to burn the internal FLASH memory of the processor and the external
FLASH memory chips on the 16x/ST10 boards. The rFLI Utility Software runs in the Windows 95/NT
environment. It supports the bootstrap loader feature and downloads a minimal monitor during
bootstrapping. The board must be bootstrapped and the special-purpose monitor program downloaded
before any other utility is used. The special-purpose monitor was developed with Rigel's integrated
development environment READS166. The rFLI program is used only when burning the external or
internal FLASH memory on Rigel boards. Use READS166 for code development.

3

1.5 Parts List
Your R-FLIC package includes the following:
Hardware

1. R-FLIC board populated with a 167/168 processor and 64K of static RAM.
Software

1. READS166, Evaluation version for Windows95/NT
2. RMON167 monitor program with source code and a separate MON if board is populated with

the ST10F168
3. rFLI Utility Software and rFLI168 for use with the board when populated with the 168 chip.
4. Software from third party vendors

Documentation
1. R-FLIC User's Guide with circuit diagrams
2. READS166 User's Guide on CD ROM
3. Bootstrap file source code on CD ROM
4. Sample programs on CD ROM

4

2 SOFTWARE
The R-FLIC board comes with a variety of software from Rigel Corporation and third party vendors, whom
we work very closely with. Rigel's own software for the 166 family may be found on the CD-ROM in the
Rigel Products file, under 166 Software.

2.1 System Requirements
Two software programs written by Rigel are included with the R-FLIC board, READS166 and rFLI Utility
Software. Both are designed to work with an IBM PC or compatible, 486 or better, running Windows 95
or Windows NT.

2.2 Software Installation, READS166
Place the CD-ROM in your drive. Go to the Rigel Products | 166 Software | READS166 | *.exe
program. Click on the exe file and the program will begin to load in your system.
Follow the standard install directions answering the questions with the appropriate answers.

2.3 Software Installation, rFLI Software Utility
Place the CD-ROM in your drive. Go to the Rigel Products | 166 Software | rFLI | *.exe program. Click
on the exe file and the program will begin to load in your system. Load the rFLI168 if your board is
populated with the ST10F168 chip.
Follow the standard install directions answering the questions with the appropriate answers.

2.4 Third Party Software
A variety of third party software is available on Rigel's CD-ROM. The software may be found in the
Strategic Partners Folder under Keil and Tasking, but may not be their latest version. Updates for their
software may be found on their web sites at www.keil.com and www.tasking.com.

Data sheets on the IC's used on our boards may also be found on Rigel's CD.

Please note that software updates occur frequently. Please check our web site,
www.rigelcorp.com (and the third party vendors web sites) occasionally to make
sure you have the most recent versions of the software.

5

3 START-UP
3.1 Connections, Jumper Settings

1. Connect your RIGEL board to the PC host via a serial cable.
2. Connect the board to a power supply.

If using JP6 a well-regulated 5-volt power supply must be used.
When using JP15 or JP16 a 9-15 volt (500ma-1 amp) wall transformer may be used.

The red LED D2 will come on if power is connected correctly
3. Check to make sure the correct jumpers are in place. The following diagram shows the most

common configuration for the R-FLIC board. Default jumpers which must be installed are:
SW4 -- in position CS0#
SW5 -- in bottom position (with 64K / 256K RAM installed)
JP1 -- jumpers in P0.4, P0.6, P0.8, P0.9, P0.10, and P0.11,
EA# jumper

Other jumpers that may be installed include: SW3, J1, J2, J6, J7, JP1-P0.12.

3.2 Software Initialization
Run the READS166 host driver by selecting Start |
Programs | READS166. You may also start
READS166 by double clicking on the READS166 short
cut icon if installed.

3.3 Serial Number
3.3.1 Demo Version
When you run the READS166 software a pop-up
registration box will open asking for your serial and
customer numbers. If you are using the demo version

>256KSW
5

U8

U9

CS1#R
A

M
M

A
P

SW
4

SW
3

R
O

M
M

A
P

U1

U6

U7

JP1
RSTOPT

P0.0-P0.15

R
O

M
 EVEN

R
O

M
 O

D
D

R
A

M
 O

D
D

R
A

M
 EVEN

A
D

D
R

ESS

D
A

TA

MAX232

JP4

U4

GND

VCC

J2

J1

VCC

G
N

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

167 Processor

EA#
VPP
VCC
GND

Host P1
GND LO HI VCC

JP3

GND SC MT MR VCC POWER
+ JP6

13.5VAC
JP15 JP16

13.5VAC

JP5

J3

J4

J6

J7
CANTXD
CANRXD

R3

JP2 ICE PUSH PUSH

NMI RESET

D5
BR

JP13
VPPON

or ST10F168

6

of the software you may press CANCEL and the box will disappear and the About Box will appear. Press
the OK button in the About Box and the software will run in the Demo mode. The demo mode limits the
size of the C files you can compile to about 12K.
3.3.2 Full Version
If you've purchased the READS166 software a registration sheet with the serial number and customer
number will be included with the READS166 User's Guide. When you run the READS software insert
these numbers in the correct boxes, press OK and then press OK in the About Box. Your software is
registered and ready to use.

3.4 Configuring READS and Initiating Host-to-Board Communications

1. Press the Projects | Options |

Project Properties | HW
Configuration to select the board
you are using from the list. Or
using the Tools | Hardware
Configuration menu command,
choose the name of the board you
are using from the board list that
appears.

Note: for the ST10F168 select the
following:

Name : R168 (user choice)
Processor: SAB-C167CR-LM
Board: R168-FLIC
Handshake: D5
Bootstrap file: B68X.BIN
Minmon file: RMM68X.BIN
Monitor file: RM67J.HEX
Description: (optional -- user preference)
See Readme.txt in 168 zip file.

2. Open the TTY window using the Tools | TTY menu command. Select the communication port

parameters using the Tools | TTY | TTY Options menu command. You will need to select the
COM port you are using, and the baud rate.

3.5 Bootstrapping
In the default configuration, all monitor programs are downloaded to the boards after the boards are
bootstrapped. That is, there is no ROM on the board that is executed upon reset. Bootstrapping loads a
small monitor, called MinMon,
which in turn loads a larger
monitor RMON16x. Once the
monitor program is loaded, the
monitor commands are available
to the user.

1. Press the reset button on
the board.

2. From the menu in the
TTY window select TTY |
Bootstrap and
Download Monitor. The
board will now bootstrap
and download the monitor
program.

You may observe the bootstrap
progress in the status line of the

7

TTY window. When bootstrapping is completed, the READS166 monitor prompt appears in the TTY
window.

3.6 Verifying that the Monitor is Loaded
 Make sure the TTY window is active, clicking the mouse inside the TTY window to activate it if necessary.

Then type the letter ‘H’ (case insensitive) to verify that the monitor program is responding. The ‘H’
command displays the available single-letter commands the monitor will recognize.

The READS monitors use single-letter commands to execute basic functions. Port configurations and
data, as well as memory inspection and modifications may be accomplished by the monitor. Most of the
single-letter commands are followed by 4 hexadecimal digit addresses or 2 hexadecimal digit data bytes.
The following is a list of the commands.

R E A D S C O M M A N D S
C nn Read port nn Configuration (DPnn)
C nn=mmmm Set port nn Configuration (DPnn=mmmm)
D Download HEX file
G XXXX Go, execute code at XXXX
H Help, display this list
M XXXX Memory, contents of XXXX
M XXXX=nn Memory, change contents of XXXX to nn
M XXXX-YYYY=nn Memory, change block XXXX-YYYY to nn
P nn Read Port nn (Pnn)
P nn=mmmm Write to Port nn (Pnn=mmmm)

W XXXX Word memory, contents of XXXX
W XXXX=mmmm Word memory, change contents of XXXX to mmmm
W XXXX-YYYY=mmmm Word memory, change block XXXX-YYYY to mmmm

3.7 Troubleshooting
All the boards are functionally tested before shipment. If the system does not bootstrap as expected,
review the hardware, software, and PC setup.
3.7.1 Hardware Set-up

1. Make sure that that you have the power connected correctly.
2. Verify that the power-on LED is lit.
3. Review the R-FLIC jumper settings.

SW4 -- in position CS0#
SW5 -- in bottom position (with 64K / 256K RAM installed)
JP1 -- jumpers in P0.4, P0.6, P0.8, P0.9, P0.10, and P0.11,
EA# jumper inserted

4. Check the modem cable connections to the R-FLIC and to the host PC.
5. Run the READS software and try to bootstrap and download the monitor again.

If the board still won't operate correctly, check the software setup.
3.7.2 Software Set-up

1. Select the TTY menu TTY Option.
2. Verify that the COM port correctly matches that of the host PC.
3. Select the Baud rate to be 19.2K
4. Select a large TTY Timeout parameter, one of at least 2 seconds.
5. Note the hardware configuration given in the drop list “HW Configuration.”
6. From the Reads166 main window, select the menu option Hardware Configuration located

under the Tools menu.
7. Find the record corresponding to the hardware configuration selected in the TTY Options.
8. Verify the entries of the record as follows:

8

Handshake: C5, (D5 for ST10F168) Bootstrap file: B67FC6.bin, MinMon file:
RMM67FC6.bin, and the Monitor file: RMON67CV.hex. (For 168 Monitor file is:
???)

The Name, Processor, Board, and Description fields are for information purposes only. If the fields are
not as listed above, you may search for a record which matches the desired fields. Once located, go to
the TTY Options dialog and select the correct hardware configuration. Alternatively, you may create a
new hardware configuration record or modify an existing one from the Hardware Configurations dialog.

If the board still won't operate correctly, check the PC setup.
3.7.3 PC set-up

1. Go to the Windows Control Panel usually located under the Settings menu (Start, Settings,
Control Panel).

2. Click on the Ports icon. (If one does not exist, you may need to install some Windows
components again.)

3. Select the port you are using. If the port number does not appear in the list add the port by
clicking on the “Add” button. You need to restart Windows for the new port selection to take
effect.

4. Click on the “Settings” button.
5. Select 57600 Baud, 8 data bits, no parity and 1 stop bit. Set “Flow Control” to none.
6. Click on the “Advanced” button. Select the port you are using.
7. Specify the “Base I/O Port Address” and the “Interrupt Request Line (IRQ)” fields to be

“default.”
8. You should try both enabling and disabling FIFO.

If these steps do not remedy the problem, please contact Rigel Corporation at (352) 373-4629 or
tech@rigelcorp.com.

9

4 OPERATING NOTES
The R-FLIC needs two connections: to a power supply and to the serial port of a host via a modem cable.

4.1 Power
Power can be applied to the board by three different methods. There is a power jack JP16, and 2 two-
position screw-type terminal blocks, JP6 and JP15.
4.1.1 JP16, Power Jack
JP16 is the default power connector for
use with a 9 to 15-volt 500ma-wall
transformer. The transformer will need a
3.5mm plug to mate with the 3.5mm power
jack on the board. The board has a built-in
regulator that will provide the circuitry with
the +5 volts needed for normal operation.
When the R-FLIC board is populated with
the ST10F168 processor a 12 to 15-volt
transformer will be needed for programming the 12-volt internal 256K FLASH. Two jumpers will need to
be inserted to activate the 12-volt circuitry for programming the internal FLASH. See Section 5.4 for
details.
4.1.2 JP15, Terminal Block
The terminal block JP15 is in parallel with the power jack, providing an alternative connection for the
power supply. Use JP15 if your power supply does not have the correct connector on it.
4.1.3 JP6, 5-Volt Terminal Block
JP6 may be used for power if a well- regulated +5V DC (+/- 5%) power source is available. Using JP6 for
power bypasses the on-board power regulator. The (+) terminal of JP6 is marked on the board.

Note
When using JP6 for power, a +5 volt regulated power supply must be used. Lower
voltage will not operate the board. Higher voltage will irreversibly damage the active
components on the board. An unregulated power supply may cause unpredictable
failure conditions. Always check that the power supply is plugged into the board
correctly. A diode is placed across the input in reverse. Thus if the power is applied to
the R-FLIC board in reverse polarity, the diode will short the power supply attempting to
prevent damage to the board.

4.2 Serial Port 0
Serial Port 0 of the microcontroller is connected to the DB-9 port P1 through an RS-232 level converter.
The microcontroller supports the transmit and receive signals. A minimal serial port may be constructed
with just 3 lines: transmit, receive, and ground, disregarding all hardware handshake signals. Port P1
(HOST) of the R-FLIC is a DB-9 female connector used to connect the board to an IBM compatible PC.
A straight-through modem cable may be used. That is a cable connecting pin 2 of the R-FLIC to pin 2 of
the host, and similarly pin 3 to pin 3, and pin 5 to pin 5. Note that J3 is a 3-pin header, which carries the
same signals as P1. This header is convenient for embedded applications where a modem cable is not
needed.

4.3 Serial Port 1
Serial port 1 is used as a synchronous serial channel. It has 3 TTL-level signals, MRST (Master Receive
Slave Transmit), MTRS (Master Transmit Slave Receive), and SCLK (Serial Clock). J4 the header, and
J8 the terminal blocks, may be used to access serial port 1. Both J4 and J8 are also denoted by SSC
(Serial Synchronous Channel) on the silk-screen.

4.4 Push Buttons
4.4.1 Reset (SW1)
The reset button is connected to the reset pin of the processor and resets the board. Before
bootstrapping, press and release the reset button and wait 3 seconds to allow the processor to initialize.

 Power Supply and Serial Port

Host P1
POWER
+ JP6

13.5VAC
JP15 JP16

13.5VAC

10

4.4.2 NMI (SW2)
The NMI button (non-maskable interrupt) is connected to the NMI pin of the processor. When pressed it
generates a non-maskable interrupt. RMON places a jump instruction at the NMI vector (address 8).
Pressing the NMI, while the RMON is present invokes the monitor program. This scheme works as long
as the monitor program in RAM is not altered. Pressing the NMI button is usually sufficient to interrupt a
user program that is downloaded and run under RMON. Application programs placed in ROM may use a
similar scheme to initialize the system when the NMI button is pressed.

4.5 LEDs
The R-FLIC has three LEDs. D2 is lit whenever power is applied to the board. D3 is lit when 12-volts is
active for programming the internal FLASH on the ST10F168 processor. D4 is turned on after system
initialization is completed. More specifically, the LED is turned on when the RSTIN# is high and
RSTOUT# makes a 0-to-1 transition, which normally follows an EINIT instruction. The LED D4 will be off
and remain off until the bootstrap loader successfully completes loading the bootstrap file into RAM.

4.6 CAN Terminal Block
The CAN LO and CAN HI lines are brought to the terminal block marked J5. A two-wire twisted pair may
be used to connect the R-FLIC board to other CAN devices. The terminal block J5 also carries the VCC
and GND lines for reference or to provide power.
4.6.1 CAN Physical Layer Considerations
The R-FLIC uses the 82C250 chip to provide a physical layer
interface to a twisted pair. The outputs of the 82C250 are
brought directly to J5 as CAN-LO and CAN-HI. The pull-up or
termination resistors are not populated on the board. If your
physical layer contains no resistors, for example, if you connect
two R-FLIC boards together, pull-up (and pull-down) resistors
will improve the line characteristics. The optimum resistor
values depend on the transmission speed and the properties of
the twisted pair. Note that the resistance and the capacitance of the twisted pair increase with the length
of the connection. In addition, the capacitance of the line becomes more important as the transmission
speeds increase. Typically, two external resistors (1K to 10K) are sufficient, one pulling CAN-LO to VCC
and the other pulling CAN-HI to GND. That is, use a pull-up resistor on CAN-LO and a pull-down resistor
on CAN-HI. These resistors may be added to the board at the resistor positions R9 and R10 next to the
CAN terminal block.

4.7 Potentiometer R3
The potentiometer R3 is used by the slope control feature of the 82C250 CAN interface chip. Turning R3
clockwise increases its value. Turned all the way counterclockwise; R3 connects the slope control pin of
the 82C250 to ground.

Slope control refers to desensitizing the CAN interface chip to fast acting transients. External noise
sources may induce interference on the twisted pair CAN physical layer, which appear as transients to
the CAN interface chip. When R3 is about zero, (grounding the slope control pin of the 82C250), the
CAN interface chip processes the signals without measuring their slopes. This gives the fastest possible
operation of the CAN interface chip. In this case, the physical layer should be coaxial or well insulated
from external noise sources. As the value of R3 increases, the CAN interface chip enters its slope control
mode. The higher the value of R3 (more clockwise rotation), the less sensitive the chip is to fast acting
signals. This is more desirable in a noisy industrial environment when unprotected twisted pair physical
media are used.

EA#
VPP
VCC
GND

Host P1
GND LO HI VCC

R9

R10

J5

 CAN Connectors

11

5 JUMPER CONFIGURATIONS
5.1 JP1 (Reset Options)
JP1 is a 16 x 2 header. Each pair of posts
corresponds to a bit of Port 0. The silk-screen is
labeled from 0 to 15 (Port0.0 to Port0.15) indicating bit
or jumper positions. Some of the 167 operating
modes are determined during reset by the state of
Port 0 bits. (Refer to the ST / Infineon data book for
further information.) Inserting a jumper in JP1
connects the corresponding bit of Port 0 to ground via
a 6.8 to 8.2K resistor. This, in turn, sets the operating
mode. For example, the Bootstrap mode is invoked
when bit 4 of Port 0 is held low at reset. The R-FLIC
uses seven of these bits for configuring the board. It is
important not to populate the remaining jumpers,
since these are either used by the system (for
example in testing modes or emulation modes) or are
reserved.
5.1.1 P0.4
Bit 4 of Port 0 invokes the bootstrap mode when held low at reset. Inserting a jumper at position 5 (P0.4)
on JP1 grounds bit 4, causing the board to bootstrap at hardware reset. The R-FLIC's default
configuration is with this jumper P0.4, installed. With P0.4 removed and a user's program with starting
address at zero in ROM, the board will run the user's
program upon reset.
5.1.2 P0.7 and P0.6
Bits 7 and 6 of Port 0 determine the bus type of the
C167/168. In the default configuration P0.7 is not
grounded and P0.6 is grounded, resulting in a startup
bus type BUSTYP=10. This is the 16-bit nonmultiplexed
bus mode. The R-FLIC's default configuration is with this
jumper P0.6, installed.
5.1.3 P0.8
Bit 8 of Port 0 determines the configuration of the WR#
and BHE# signals. When P0.8 is grounded, WR# acts
as WRL# and BHE# as WRH#. The latter, WRL# and
WRH# are then used to select the low and high halves of
the memory banks. P0.8 is grounded in the default
configuration, by inserting a jumper in P0.8.
5.1.4 P0.9 and P0.10
Bits 9 and 10 are copied to the CSSEL field of the RP0H register. They determine the number of chip
select lines the C167 will generate. The default configuration is three chip select lines, which is obtained
by grounding both P0.9 and P0.10, with jumpers inserted. The RAM and ROM memory banks use two of
the chip select lines. The third chip select line is used in experiments.
5.1.5 P0.11 and P0.12
Bits 11 and 12 are copied to the SALSEL field of the RP0H register. They determine the width of the
address bus the C167 will use. The default configuration is the 24-bit wide address bus. This is achieved
by grounding P0.11 but not P0.12.

The on-chip CAN controller uses the address lines A21 and A22 for the CANRxD and CANTxD signals.
Thus, when using the CAN controller, the reset options must be set to have no more than the 4 bits of
segment address. The 4-bit segment address mode gives 20 address lines (A0 to A19) and makes A21
and A22 available to the on-chip CAN controller. Select the 4-bit segment address mode by grounding
both P0.11 and P0.12.

CS1#R
AM

M
AP

SW
4

SW
3

R
O

M
M

AP

U7

1514131211109876543210

JP1
RSTOPT

P0.0-P0.15

R
O

M
 EVE

N

CS0#

 Options Header

CS1#R
AM

M
AP

SW
4

SW
3

R
O

M
M

AP

U7

1514131211109876543210

JP1
RSTOPT

P0.0-P0.15

R
O

M
 EVE

N

CS0#

Default Option Jumpers

12

5.2 SW3 and SW4 (RAM and ROM Chip Select Assignment)
SW3 and SW4 are the chip select jumpers used for mapping RAM and ROM. Two chip select lines are
available for RAM and ROM mapping, CS0# and CS1#.
Note that CS0# is active upon reset. If you wish to run
the board with the RAM active at start-up insert SW4 in
CS0# position. If you wish to run your own program from
external FLASH ROM on start-up insert a jumper in SW3
in the CS0# position. Care should be taken not to map
both memory banks to the same chip select signal.
5.2.1 SW3, External FLASH ROM
If ROM is not used, you do not need to populate SW3
with a jumper. The default configuration of the board is
with RAM mapped to low memory and no ROM.
5.2.2 SW4, RAM
The R-FLIC board uses RAM in low memory for the
READS166 monitor program. The default configuration
maps RAM to lower memory, controlled by the CS0#
signal.

5.3 SW5 (RAM Size)
SW5 selects the size of RAM. This jumper should be
placed in the lower position for 32K and 128K devices.
Note that with 32K devices, RAM is 64K and with 128K
devices RAM is 256K. For 512K devices, which provide
1MB RAM, the jumper needs to be populated in the upper position marked “>256K”.

5.4 Internal FLASH Programming Jumpers
 Two jumpers control the built-in 12-volt circuitry needed for programming the internal FLASH memory on
the ST10F168 processor. JP13-VPPON and JP21-VPP jumpers should only be inserted when you clear,
erase, or program the FLASH. During normal
operation of the board, these jumpers should
be removed.
5.4.1 JP13, VPPON
JP13 must be inserted to provide the 12-volts
needed to program the internal FLASH.
When
the jumper is inserted the red LED, D3 will
light up showing the 12-volt circuit is active.
5.4.2 JP21, VPP Options
JP21 is a 2x3 position header that connects
the VPP pin of the processor to 12-volts
(VPP), 5-volts (VCC), or GND. When
programming the internal FLASH, the jumper
in JP21 must be plugged into the VPP
position. With the jumper removed from JP21 the VPP pin of the processor, by default, is connected to 5-
volts by a pull-up resistor in series with a diode.

Note: You can damage the board by inserting more than one jumper in JP21. Never
insert more than one jumper into JP21.

>256KSW
5

U8

U9

CS1#R
A

M
M

AP
SW

4

SW
3

R
O

M
M

AP

U1

U6

U7
JP3
SYSTEM
BUS

R
O

M
 EVEN

R
O

M
 O

D
D

R
A

M
 O

D
D

R
A

M
 EVEN

D
A

TA

A
D

D
R

ESS
CS0#

Default Memory Jumpers

MAX232

U4

167 Processor

EA#
VPP
VCC
GND

Host P1
POWER
+ JP6

13.5VAC
JP15 JP16

13.5VAC

D5
BR

JP13
VPPON

D3

EMI

 FLASH Programming Jumpers

13

5.5 JP14, EA#
The EA# jumper is used to connect the EA# pin of the processor to ground. With the EA# jumper
inserted, the board uses external memory. With the EA# jumper removed, the board will run from the

internal FLASH memory of ST10F168 processor.

Note: The reset options jumper P0.4 must also be removed
to prevent the processor from entering the bootstrap mode.

5.6 J6 and J7, CANTxD, CANRxD Jumpers
The on-chip CAN controller uses the address lines A21 and A22 for
the CANRxD and CANTxD signals. Note that when using the CAN
controller, the reset options must be set to have no more than the 4
bits of segment address. This is done by grounding both P0.11 and
P0.12.

The jumpers J6 and J7 connect A21 and A22 to the CAN interface
chip. The jumpers are located next to R3, the slope potentiometer.
Remove the jumpers J6 and J7 if you are not using the CAN
controller and need to use A21 and A22 to access larger banks of
(off-board) memory.

5.7 Analog-to-Digital Converter Reference
Jumpers
The analog-to-digital converter requires a ground and reference voltage. These reference voltages may
be provided either from JP4 or JP5 lines marked VG (GND reference voltage) and VR (reference
voltage), or connected to the +5 volt TTL supply. Jumpers J1 and J2 select the source of reference
voltages. The center posts of J1 and J2 are connected to the 167 VAREF and VAGND inputs. Post 1 of
J1, marked VCC is connected to the +5 volt supply. Thus, connecting this post with the center post
selects VAREF to be the same as the +5 volt supply. In the alternate position, VAREF is to be supplied
from JP5 from the terminal marked VR. Similarly, the post marked GND of J2 is connected to the ground
of the supply. Connecting the center post of J2 with the post marked GND selects VAGND to be the
same as the ground of the supply voltage. In the alternate position, the ground reference is to be
supplied from the JP5 terminal marked VG.

5.8 JP2
The header JP2 and jumpers, (JP)8, (JP)9, (JP)10, (JP)11, (JP)12 accommodate the HiTEX/HiTOOLS
In-Circuit Emulator (ICE). Please call Rigel if you wish to use the In-Circuit Emulator with this board.

U4

GND

VCC

167 Processor

EA#
VPP
VCC
GND

J6

J7
CANTXD
CANRXD

R3

D5
BR

JP13
VPPON

J2

J1

 Jumpers

14

6 MEMORY BLOCK OPTIONS
There are two or three blocks of memory available on the R-FLIC board, (three when populated with the
ST10F168) The RAM block, the ROM block, and the on-chip 256K (internal) FLASH block of memory on
the ST10F168. The RAM and ROM block can each hold up to 1MB of memory.

6.1 RAM Memory Options
The RAM block is designed to take 3 sizes of static RAMs, 32KB (62C256-type), 128KB (681000-type),
and 512KB (628512-type) chips. Alternately battery-backed RAMs may be used in the RAM block. Two
chips are needed, one for EVEN and the other for ODD addresses. These chips are placed in 32-pin
sockets marked U8 and U9. Place 28-pin 32K RAM devices closer to the 2 X 25 header, away from the
processor. RAM size must be selected with jumper SW5. The 167 may be programmed to insert wait
cycles during external memory access. However, in order to run the 167 at its full potential, the RAMs
should be rated at 70 nano seconds or faster.

The READS166 software may be used to download and run programs from RAM.

6.2 ROM Memory Options
The ROM block of memory accepts a variety of 5-volt FLASH EEPROMs in the ST Microelectronics,
AMD, and Motorola 29F0xx family. Two chips are needed, one for EVEN and the other for ODD
addresses. These chips are placed in the 32 pin PLCC sockets marked U6 and U7. The rFLI Utility
Software that comes with the R-FLIC board may be used to program the FLASH EEPROMs on the
board.
The 167 / 168 may be programmed to insert wait cycles during external memory access. However, in
order to run the 167/ 168 at its full potential, the FLASH should be rated at 70 nano seconds or faster.
6.2.1 Program Settings for Running out of External EEPROM
The external FLASH EEPROM may be used to store code, which is to be executed upon reset. The
demo project HelloRom illustrates how a C program may be placed into external EEPROM. The compiler
settings for code to be executed from external ROM are given as comments at the beginning of the
example code. The instructions and settings are repeated below. Please note that parameters such as
code origin and stack size may be modified to better suit your application needs.

1. Place a "_startup.inc" file in the project subdirectory containing the following instructions:

mov BUSCON0, #480h
mov ADDRSEL1, #00C2h
mov BUSCON1, #480h

2. Check the "Start on RESET" box under the "Entry Points" tab of the Projects | Options |
Compile Options dialog box.

3. Check the "Start Serial Port (9600)" box under the "Start/End" tab of the Projects | Options |
Compile Options dialog box.

4. Again, from the Compiler Options dialog, select the "Memory Map" tab and specify the
following:

Code origin 100
System stack size 1000
System stack base C800
Syscon 8080

6.2.2 Programming the External EEPROM
Programming the FLASH EEPROMs on the board is very easy using the rFLI Software that comes with
the board. The following steps should be followed for programming the FLASH device on the board.

1. Jumpers P0.4, P0.6, P0.9, P0.10, P0.11, EA#, J12, must be inserted and RAM should be
mapped to CS0#, and ROM mapped to CS1#. These are the default jumper settings.

2. Apply power to the board. The red LED D1 will light up.
3. The rFLI Utility Software must be installed and used to bootstrap the board.
4. From the rFLI Utility Software select the TTY | Port menu command to select the port you wish

to use.

15

5. Use the TTY | Bootstrap and load monitor command to bootstrap the board. Alternatively,
click the "Boot" button at the top of the rFLI window.

6. After bootstrapping, the special-purpose monitor program is downloaded to the board. You
may verify that the board is responding by pressing the 'enter key' and observing the monitor
prompt "ST10F167 >". You may also type 'H' for a brief help screen displayed by the monitor.

7. From the menu commands select EEPROM | Status to check the status of the chips. Select
EEPROM | Erase to erase the EEPROMs.

8. The menu command EEPROM | Download HEX file may be used to program the FLASH
EEPROMs.

9. The program in the FLASH EEPROM memory may be dumped to the work buffer to be
inspected, modified, and reloaded to the memory.

6.2.3 Running Programs from External EEPROM
The program burned into the FLASH EEPROMs can be mapped to run at a variety of locations
depending on the chip select signals assigned and on the size of each memory bank programmed into
the external bus control registers BUSCON0 and BUSCON1. See Section 8 and the ST / Infineon data
books for more information on system programming.
To run the program at start up, the following steps may be followed.

1. Jumpers P0.6, P0.8, P0.9, P0.10, P0.11, EA#, and SW5 (depending on the RAM size), must be
inserted. Remove P0.4, insert the jumper from SW4 into the CS#1 position and insert a jumper
into SW3 in the CS0# position.

2. Apply power to the board. The red LED D2 will light up.
3. Push the reset button on the board. Your program is now running from low memory. To test

this you may use the simple 'Hello World' program given with the READS166 software. Load
the program into the external FLASH and from the READS166 TTY window press the reset
button on the board. The message 'Hello World' should appear in the TTY window.

6.3 On-Chip FLASH Memory
The ST10F168 has 256K of on-chip FLASH memory. The R-FLIC board is designed to provide the 12
volts needed to program the FLASH. The R-FLIC is sold with software, the rFLI168 Utility Software,
especially written to program the FLASH on the ST10F168 processor. The on-chip FLASH has 4
memory banks, two 96K, one 48K, and one 16K, which may be programmed and erased separately.
Please refer to the ST10F168 data book for details of the FLASH memory.
6.3.1 Program Settings for Running out of Internal FLASH
The Internal FLASH may be used to store code, which is to be executed upon reset. The demo project
HelloFlash168FLIC.hex illustrates how a C program may be placed into internal FLASH. The compiler
settings for code to be executed from internal FLASH are given as comments at the beginning of the
example code. The instructions and settings are repeated below. Please note that parameters such as
code origin and stack size may be modified to better suit your application needs.

1. Place a "_startup.inc" file in the project subdirectory containing the following instruction:

mov BUSCON0, #480h

2. Check the "Start on RESET" box under the "Entry Points" tab of the C Compiler Options dialog
box.

16

3. Again, from the C Compiler Options dialog, select the "Memory Map" tab and specify the
following:

Code origin 100
System stack size 1000
System stack base C000
Syscon 8480

6.3.2 Programming the Internal FLASH
In order to program and run from the internal FLASH on the ST10F168 processor follow these steps.

1. Jumpers P0.4, P0.6, P0.8, P0.9, P0.10, P0.11, EA#, SW4 (CS0#), and SW5 (depending on the
RAM size), must be inserted. These are the default jumper settings.

2. Use a 12-15 volt wall transformer in JP15 to power the board, the LED D2 will light up.
3. Reads166 must be closed so that the serial port may be used by the rFLI168 software
4. The rFLI168 Utility Software must be installed and used to bootstrap the board.
5. From the rFLI168 Utility Software select the Comm Port you wish to use.

6. Reset the board and then use the “Boot” button to bootstrap the board. During bootstrapping,

the special-purpose monitor program is downloaded to the board. At the end of system
initialization the LED D4 is turned on. You may verify that the board is responding by observing
the monitor prompt “Bootstrapping OK”

7. Use the “Status” button to review the current status of the FLASH. The software will report
back on status of FLASH:

“Status OK, Version XXX”
or “Flash Status – Cannot get Flash Status”

Alternatively, you may “Dump” the contents of the internal FLASH, which is then downloaded
and written to a file in binary format.
If the memory has data in it, it is recommended that you erase the FLASH before you proceed.

8. JP13-VPPON and JP21-VPP jumpers need to be inserted before you erase, or program the
FLASH. The LED D3 will light up when the jumpers are inserted to indicate 12-volts on the
board.

17

9. Once the jumpers are inserted, use the “ERASE” button to erase the FLASH memory. When
the memory is erased the software sends the message “Erase Flash OK”.

10. Use the “Program” button to select and download a file into FLASH memory. Input the file name

of the HEX file in the dialog box. When the programming is completed the software reports
“Programming Hex file OK”

11. To check the status of your program in memory you may use the “Dump” button. The Dump

button downloads your program into a Binary file that allows you to view your program in
memory and edit it. You may also download the work buffer back into memory once you've
edited it.

6.3.3 Running a Program from Internal FLASH
To run the program at start up, the following steps may be followed.

1. To run the program from internal FLASH remove the jumpers JP13-VPPON and JP21-VPP.
The LED D3 should turn off. Remove the EA# jumper. Remove jumper P0.4.

2. Push reset on the board.
3. Your program will now run at start-up. If you’ve used our “HelloWorld” program you may view

the prompt “Hello World” by closing the rFLI168 software and opening the Reads166 software
and viewing the prompt in the TTY window.

4. You may continue to use the 12-15-volt wall transformer during normal operation of the board.

6.4 Alternate Memory Maps
The RAM, ROM and internal ROM blocks of memory can be mapped in a variety of ways depending on
the chip select signals assigned to each bank and on the size of each memory bank programmed into the
external bus control registers BUSCON0 and BUSCON1. Refer to the ST / Infineon data books for more
information on system programming.

6.5 Default Memory Setting
The default memory map assumes 256K of RAM with no ROM. In this configuration, the board is
bootstrapped and run with RAM in low memory. JP1 should have jumpers in locations 4, 6, 8, 9,10 and
11. SW5 should have a jumper in the lower position, and SW4 should have a jumper in the lower RAM
position. This is the default configuration for the R-FLIC.

18

7 HEADERS
The R-FLIC board has five headers: the system bus header JP3, the input/output header JP4, the extra
input/output header JP5, and the serial port headers. The system bus header contains the address, data,
and control busses, the input/output header contains Ports 2, 3, and 5, and the extra input/output header
contains Ports 5, 6, 7, and 8. Individual signals of these jumpers are listed below. Pin 1 may be
identified as the post with the square pad on the printed circuit board.

7.1 JP3 - System Bus Header

Signal Pins Signal
167/168 165 166 166 165 167/168

Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

D0 5 6 A0
D1 7 8 A1
D2 9 10 A2
D3 11 12 A3
D4 13 14 A4
D5 15 16 A5
D6 17 18 A6
D7 19 20 A7
D8 21 22 A8
D9 23 24 A9

D10 25 26 A10
D11 27 28 A11
D12 29 30 A12
D13 31 32 A13
D14 33 34 A14
D15 35 36 A15
RD# 37 38 A16
ALE 39 40 A17

RSTIN# 41 42 WR# WR# or WRL#
RSTOUT# 43 44 BHE#

NMI# 45 46 NC A18
A21 NC 47 48 NC A19
A22 NC 49 50 NC A20

19

7.2 JP4 - Input/Output Header

Signal Pins Signal
167/168 165 166 166 165 167/168

Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

P5.0 not used P5.0 5 6 P5.1 not used P5.1
P5.2 not used P5.2 7 8 P5.3 not used P5.3
P5.4 not used P5.4 9 10 P5.5 not used P5.5
P5.6 not used P5.6 11 12 P5.7 not used P5.7
P5.8 not used P5.8 13 14 P5.9 not used P5.9

VAGND not used VAGND 15 16 S1I not used
VAREF not used VAREF 17 18 S1O not used

P2.0 not used P2.0 19 20 P3.0
P2.1 not used P2.1 21 22 P3.1
P2.2 not used P2.2 23 24 P3.2
P2.3 not used P2.3 25 26 P3.3
P2.4 not used P2.4 27 28 P3.4
P2.5 not used P2.5 29 30 P3.5
P2.6 not used P2.6 31 32 P3.6
P2.7 not used P2.7 33 34 P3.7

P2.8 35 36 P3.8
P2.9 37 38 P3.9
P2.10 39 40 P3.10
P2.11 41 42 P3.11
P2.12 43 44 P3.12
P2.13 45 46 P3.13
P2.14 47 48 P3.14 not used
P2.15 49 50 P3.15

20

7.3 JP5 - Extra Input/Output Header

Signal Pins Signal
167/168 RMB-165i RMB-165i 167/168

Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)

P6.0 5 6 P6.1
P6.2 7 8 P6.3
P6.4 9 10 P6.5
P6.6 11 12 P6.7

A23 not used 13 14 READY#
VAGND not used 15 16 not used
VAREF not used 17 18 not used

P5.0 not used 19 20 not used P7.0
P5.1 not used 21 22 not used P7.1
P5.2 not used 23 24 not used P7.2
P5.3 not used 25 26 not used P7.3
P5.4 not used 27 28 not used P7.4
P5.5 not used 29 30 not used P7.5
P5.6 not used 31 32 not used P7.6
P5.7 not used 33 34 not used P7.7
P5.8 not used 35 36 not used P8.0
P5.9 not used 37 38 not used P8.1

P5.10 39 40 not used P8.2
P5.11 41 42 not used P8.3
P5.12 43 44 not used P8.4
P5.13 45 46 not used P8.5
P5.14 47 48 not used P8.6
P5.15 49 50 not used P8.7

7.4 Serial Port Headers
The ST10F168 has two serial ports. Serial port 0 is accessed through the RS-232 level converter. Serial
port 1 is used as a synchronous serial channel by the R-FLIC.
7.4.1 J3 (S0)
J3 is the secondary access port of serial port 0. J3 is a 3-pin header, which carries the same signals as
P1. J3 is also denoted by S0 and its 3 lines by G (Ground), T (Transmit), and R (Receive), on the R-FLIC
silk-screen. J3 is intended for embedded uses of the R-FLIC when P1 is not populated. J3 is located
above the I/O headers.
7.4.2 J4, J8 (SSC)
Header J4 and the terminal blocks, J8 are the access port for serial port 1. Header J4 carries the 3 TTL-
level signals, MRST (Master Receive Slave Transmit), MTRS (Master Transmit Slave Receive), and
SCLK (Serial Clock) as well as provides VCC and GND for reference. Header J4 is also denoted by SSC
(Serial Synchronous Channel) on the silk-screen. The individual pins of the header are denoted by VCC,
R, T, C, and GND, which correspond to VCC, MRST, MTSR, SCLK, and GND, respectively. J4 is located
above the I/O headers. The terminal blocks J8 also carry the same signals and are marked as VCC, MR,
MT, SC, and GND, which correspond to VCC, MRST, MTSR, SCLK, and GND, respectively.

21

8 SYSTEM PROGRAMMING
8.1 The SYSCON Register
The system control register (SYSCON) specifies many of the operating parameters of the 167 / 168
microcontroller. While many of these parameters may be changed depending on the application, the
BYTDIS bit must be cleared and the Write Configuration Control bit (WRCFG) must be set. With
BYTDIS=0, the BHE# signal is generated by the microcontroller. With WRCFG=1, the WR# signal of the
microcontroller is used as WRL# and the BHE# as WRH#. These control signals, WRL# and WRH#, in
turn are used to enable the odd and even memory devices of the RAM and ROM banks.
The following value is used in the RMON167C monitor program given in the distribution disk,

 mov SYSCON, #01480h ; 0001:0100:1000:000b

which selects the following parameters:

Field Name Field Description Value Function Remarks
STKSZ stack size 000 256 words default
ROMS1 map internal ROM

to the first segment
1 map internal ROM in

segment 1

SGTDIS segmentation
disabled

0 disable segmentation
(64K memory)

only IP is used
(CSP is not used) in

calls and returns
ROMEN ROM enable 1 enable internal ROM
BYTDIS Disable BHE# 0 do not disable BHE# BHE# is used as

WRH#
CLKEN Clock enable 0 CLKOUT disabled CLKOUT is the

alternate function of
P3.15

WRCFG Write configuration 1 WR# is WRL#, BHE# is
WRH#

VISIBLE Visible mode 0 XBUS accesses are
done internally

default

XPER-
SHARE

XBUS peripheral
share mode

0 External accesses to
XBUS peripherals are

disabled

default

8.2 The BUSCON0 and BUSCON1 Registers
The width, type of multiplexing, and various wait states of the buses depend on the Bus Control
(BUSCON) registers. Each chip select line (CSx#) has a corresponding BUSCONx register. The
selection of the various wait states depend on the application and on the speed of the memory devices.
Refer to the Infineon Data Book for more information about the fields of BUSCON.

Since CS0# is the chip select line activated upon a reset (a software reset or a hardware reset without
bootstrapping), BUSCON0 has the special designation of determining the bus configuration upon reset.
The bus type field (BTYP) of BUSCON0 is copied from Port 0 during reset. The values of Port 0 during
reset are determined by the jumpers on the R-FLIC board as explained in Section 4.1. If the ROM bank
not used, there is no need to program BUSCON1. Otherwise, BUSCON1 should be programmed to have
the same bus type as BUSCON0, that is, BTYP=10b for 16-bit demultiplexed. In addition, the bit
BUSACT1 of register BUSCON1 must also be set. If BUSACT1 is cleared, CS1# is disabled.

8.3 The ADDRSEL1 Register
Each CSx# line except CS0# has a corresponding ADDRSELx register which determines its offset
(beginning address) and its range. CS0# does not have an ADDRSEL register. All addresses outside the
ranges collectively defined by ADDRSELx registers are accessed by CS0#.

22

If you use both the RAM and the ROM banks, then both chip select lines CS0# and CS1# are needed. In
this case, register ADDRSEL1 must be set. The following, for example, enables ADDRSEL1 to start at
100000h (offset at 1MB) and have a range of 1MByte.

 mov ADDRSEL1, #1008h

The actual value depends on the size of RAM and ROM banks. Also note that the SGTDIS bit of the
SYSCON register should be cleared if the total memory exceeds 64K

23

9 BOOTSTRAPPING
The R-FLIC bootstrapping is triggered by grounding P0L.4 at reset. A 32-pin header is used to ground
the bits of P0L via a resistor array with a nominal value in the range of 6.8 to 8.2K.
Once the bootstrap loader is invoked the serial port S0 is used to communicate with the 167. The host
must first send a 0 byte with 8 data bits, 1 stop bit and no parity bits. The 167 responds with the byte
C5h. Then the host expects 32 bytes of code to be downloaded to internal RAM starting at address
0FA40h and run.

Since 32 bytes are not enough to initialize and configure the ST10F168 and then download a user
program, a secondary loop is used. This loop is a short piece of code that is placed starting at address
0FA60h, so that when the 32 bytes of primary code are executed, the program continues with the
secondary loop. The approach is described in more detail below.
The 32 bytes downloaded are, in hexadecimal,

E6 F0 60 FA
9A B7 FE 70
A4 00 B2 FE
7E B7
B4 00 B0 FE
86 F0 BB FC
3D F6
CC 00
CC 00
CC 00
CC 00

which correspond to the following short code.

 ; origin is 0FA40h
 mov R0, #0fa60h
W0:
 jnb S0RIR, W0
 movb [R0], S0RBUF
 bclr S0RIR
 movb S0TBUF, [R0]
 cmpi1 R0, #0fcbb ; read 604 bytes
 jmpr cc_NE, W0
 nop
 nop
 nop
 nop

Note that the NOP (no operation) operations are required to fill the 32 bytes, since the bootstrap loader
remains active until all 32 bytes are received. When the bootstrap loader receives its last byte and places
it in address 0FA5Fh, it makes a jump to 0FA40h and starts executing the code. This is the short loop
given above. Note that at this time the internal RAM starting from 0FA60h does not contain any relevant
code.

The short loop takes advantage of the serial port S0 which is already initialized. It waits for a user
specified number of bytes, 604 bytes in this case, and places these bytes consecutively starting from
internal RAM location 0FA60h. When the loop is done (all 604 bytes received) the program continues by
executing the NOP operations, and then executing code from 0FA60h on. Thus the 604 bytes loaded by
the secondary loop are also interpreted as code.

The user may alter the number of bytes to be loaded by changing the 21st and 22nd bytes (BB and FC)
which give the address (the low byte, followed by the high byte) of the last byte to be read by the loop.
Note that there is a practical limit to the number of bytes that can be downloaded by this loop: the PEC
source and destination pointers as well as the SFRs which occupy addresses FDE0h and above must not
be overwritten by data bytes.
Due to the powerful instruction set of the 167, a lot of functionality can be implemented within 604 bytes
of code. The 604 bytes contained in the file BTL67CRI.DAT downloads a minimal monitor program. This

24

program contains an initialization routine, subroutines to send and receive characters through the serial
port, a subroutine to download code in the Intel Hex format, and a subroutine to jump to any location
within the 64K segment. The latter two are invoked by single-letter commands.

The 604 byte-code may be broken down into four sections.

1. Initialization code to be executed after the 32-byte bootstrap
2. Code to be written starting at address 0 to be executed after the software reset.
3. The minimal monitor to be placed starting at address 8000h
4. The software reset (SRST) instruction to leave the bootstrap mode.

Sections 1 and 4 are somewhat different than sections 2 and 3. The bytes downloaded in sections 1 and
4 are actual instructions which are executed after the 32-byte bootstrap load is completed. Sections 2
and 3 are instructions to poke bytes into memory. More specifically, in section 2, bytes are written to
memory locations starting from address 0. In section 3, from address 8000h. The bytes placed into
memory locations starting from address 0 is executed after the software reset instruction. This is an
initialization program which, upon completion, branches to address 8000h to execute the minimal monitor
program.

For example, the initialization code starting at address 0 begins with the two instructions

DISWDT
EINIT

whose machine instructions are (A5 5A A5 A5) and (B5 4A B5 B5),
respectively. The code within the 604-byte download block pokes these bytes starting from address 0.
That is, these instructions are placed into memory, one word at a time, as data. The following
instructions are used.

mov R1, #0A55Ah ; begin: DISWDT
mov 0, R1
mov R1, #0A5A5h
mov 2, R1

mov R1, #0B54Ah ; EINIT
mov 4, R1
mov R1, #0B5B5h
mov 6, R1

This pattern is used throughout sections 2 and 3. First the word is written to register R1. Then the
register is copied to memory. The file BTL67.DAT contains the bytes downloaded to the R-FLIC board
during bootstrapping. The file BTL.SRC contains the source code.

The initialization routines configure the SYSCON register. The internal ROM is disabled and the external
bus is activated. Next the CSP and DPP registers are initialized. These steps need to be completed
before the EINIT instruction. Note that if the watchdog timer is to be disabled, this too must be done
before the EINIT instruction.

25

10 THE MONITOR PROGRAMS
10.1 Minimal Monitor
The minimal monitor is placed by the bootstrap loader starting at address 8000h. The monitor responds
to two single-letter commands 'D' and 'G'. The 'D' command places the monitor in a download mode.
Code in the Intel Hex format is expected. Code may be downloaded anywhere in the first 64K segment.
The 'G' (Go) command expects 4 hexadecimal characters. These 4 characters specify an address within
the first 64K segment. A jump is performed to this address. If a user program is downloaded (using the
'D' command), say at address 0C000h, then the GC000 command branches to the user program. In
many cases, the user program is the application program or a monitor program, such as RMON167, and
hence, the minimal monitor is no
longer required. If, however, the
user program wishes to return to the
minimal monitor, it should branch to
address 8000h. Note that the
minimal monitor initializes the stack,
so either a call or a jump to address
8000h would work.

The minimal monitor is a loop that
executes the following flowchart.

.

'D' received?

'G' received?

and wait for a character

Download Intel
Hex code

Jump to XXXX

Yes

No

Yes

No

26

10.2 MON167 Monitor
The monitor program RMON167 allows inspecting and modifying the first 64K segment of R-FLIC
memory, configuring the ports, inputting and outputting from the general purpose ports, downloading
code in the Intel Hex format, and branching to user code. RMON167 features are invoked by single-letter
commands. Serial port 0 is initialized to run at 9600 Baud with 8 bits of data, 1 stop bit and no parity bits.
RMON167 is intended to be downloaded after bootstrapping the R-FLIC board. RMON167 is placed
starting at address 0C000h. The first 256 bytes are reserved for monitor variables. The entry point to
RMON167 is at address C100h. To set up RMON167, initialize READS166 and the R-FLIC board and
invoke the Bootstrap command as explained in the previous section. From the TTY menu, select
Download to download RMON167.HEX. Branch to and execute RMON167 using the Run command
under the TTY menu. Specify address C100 since the entry point to RMON167 is at 0C000h. Note that
RMON167 places a jump to C100 at the nonmaskable interrupt vector. Thus, RMON167 may
subsequently be invoked by pressing the NMI pushbutton on the R-FLIC. RMON167 initializes the stack
and resets the interrupts. Thus, even after the NMI button is pressed, RMON167 clears the NMI interrupt
by executing a dummy 'return from interrupt' instruction.

Alternatively, RMON167 may be placed in EPROM and invoked upon reset. The source code for
RMON167 is given on the distribution disk. RMON167 is not optimized for speed or size, but rather for
clarity and pedagogical value. The legal users are encouraged to modify RMON167 and use portions of
it in applications programs.

The single-letter commands of RMON167 are explained below.

D Download HEX file
The D command places RMON167 in a download mode. The monitor expects to receive code in the Intel
Hex format through serial port 0. The download mode is terminated when the last line of Intel Hex code
is received (when the byte count is 0).

C Port Configuration
The C command is used to configure the ports, i.e., the port direction registers DPnn. Cn displays the
current setting of DPn. Cn=mmmm writes the word mmmm to register DPn.

G Go
The user code at address xxxx is branched to by the Gxxxx command. Note that the user program may
return to RMON167 by a branching instruction to address 0C000h. RMON167 initializes the stack, thus,
either a jump or a call instruction may be used to return to RMON167.

H Help
The H command displays a summary of available monitor commands.

M Memory
The first 64K segment of the R-FLIC memory may be inspected or modified by the M command. The M
command is also useful to poke short programs into memory.

M XXXX displays the current contents of memory address XXXX.
M XXXX=nn inserts the byte nn into memory address XXXX. When this command is used,
RMON167 displays the current contents as well as the new contents. The address XXXX is
incremented and the current contents of (XXXX+1) are displayed. Consecutive bytes may be
written starting at XXXX. The process is terminated if a carriage return or an illegal hexadecimal
digit is keyed in.
M XXXX-YYYY displays the block of memory between addresses XXXX and YYYY.
M XXXX-YYYY=nn fills the memory block XXXX to YYYY with byte nn.

P Port Data
The P command is used to read from or write to the ports. Pn displays the current value of port n. If port
n is an input port, then the value read is the current voltage levels applied to the ports. If port n is an
output port, Pn returns the current output value to port n. Pn=mmmm sets the current value of output port
n to mm.

27

Note that individual bits of the ports may be programmed as input or output. Thus, the
word returned by Pn gives the external voltage levels applied to the input bits and the
current values of the output bits.

W Word Memory
This command is identical to the M command, except that the memory contents are displayed and
modified as words (2 bytes). Words start at even address.

28

11 READS166 VERSION 3.1
11.1 Overview
READS166, version 3.1, is Rigel Corporation’s Integrated Development Environment for the ST
Microelectronics 16-bit processors. READS166 includes an editor, a host-to-board communications
system, an assembler, and a C compiler. READS166 is completely rewritten in native 32-bit code to run
on Windows95 and WindowsNT. READS166 includes a sophisticated project management system to
simplify code reusability and version control. The C compiler is rewritten to support a full debugger. The
debugger allows you to step through your code with breakpoints and variable watches as the compiled
code runs on the target board, similar to the operation of an in-circuit emulator.

RMON166 - The READS166 monitor program
RMON 166 is downloaded after bootstrapping (or it may be placed into ROM) and supports basic
memory and port functions. RMON166 allows downloading and running applications programs. The
complete source code for user modifications or upgrades is included on disk.
Ra66 - The READS166 Assembler
Ra66 is a cross assembler for the C166 family of microcontrollers. It is intended to be used by the
hardware and software products available from Rigel Corporation. Ra66 is a two-pass assembler.
Forward references are resolved during the second pass. The second pass is used only when
necessary. If no forward references are used, Ra66 completes assembly in a single pass.
Rc66 - The READS166 C Compiler
Rc66 is a C Compiler for the C166 family of processors. It compiles code for the tiny memory model
which fully resides in the first segment of memory. Rc66 is a designed as a low-cost C compiler which
provides a quick development cycle for simpler applications which do not need more than 64K of code, or
the use of standard C libraries. Rc66 implements a subset of ANSI C. Rc66 works in conjunction with
Ra66: first an assembly language program is generated from the C source then a HEX file is created.

The READS166 software has the following distinctive features:

• Project management for organized software development
• Archive storage for source code modules
• Multiple project management with drag and drop module transfers
• Enhanced graphical user interface for easy monitoring
• Stand alone compiler and editor applications connected to READS166 in a client/server fashion
• Drag and drop code development
• Mixed mode projects (C and assembler)
• Wizard code generator

11.2 READS166 V3.00 CONCEPTS
READS166 introduces a project-oriented code development and management system. The new
concepts are defined below.
11.2.1 Project
A project is collection of files managed together. Each file in a project corresponds to a code module. All
projects are kept in their individual subdirectories. You may copy or save projects as a single entity.
When saved under a different name, a new subdirectory is created and all components of the project are
duplicated in the new subdirectory.

By using the long names provided by the 32-bit Windows operating systems, you may use this feature to
keep different versions of your software in a controlled manner. For example, the project “Motor Control
07-20-1997” may be saved under the name “Motor Control 07-25-1997” as new features are added. This
way, if needed, you may revert to an older version.

29

A project may either be an “executable project” or an “archive project.”
Executable Projects
Executable projects are meant to be compiled into code which is eventually run on the target system.
Components of an executable project are the code modules containing subroutines or functions which
make up the entire program.
Archive Projects
Archive projects are never compiled. They are intended to facilitate code reusability by organizing and
keeping code modules together. An archive project acts as a repository which you may add modules to,
or copy modules from. Executable projects can be quickly constructed using already written and
debugged modules from an archive project.
11.2.2 Module
A module is a single file that belongs to a project. Typically modules are either assembly language
subroutines or C language functions. You may copy modules from one project to another, or share
modules in different projects. For example, you may copy a previously developed module from an
archive project to an executable project by simply dragging its icon from one project window to the other.
By using existing or previously developed and debugged modules, you may significantly improve code
reusability, much in the same manner as libraries. Reusing modules differs from using library functions of
existing routines in that modules are kept in source form rather than object form.

For more information on the READS166 software please refer to the READS166 Version 3.0 Users
Manual. The entire manual is available in PDF format from our Web site www.rigelcorp.com.

30

12 PARTS LIST
12.1 Assembly Parts List

QUANTITY PART DESIGNATOR
 CAPICATORS

1 Surface Mount 1nF C30
34 Surface Mount 10nF C1-C28, C41-47, C49
1 1uF MONO C29
4 1.0uF C32-35
1 22uF C31
5 47uF C36-39, C48
2 100uF C40, C46
1 220uF C44

 DIODES

1 1N4001 D1
2 Surface Mount RED LED D2, D3
1 Surface Mount GREEN LED D4
1 2N7000 Q1
1 BRIDGE D5
1 EMI FILTER NOT POPULATED

 CONNECTORS

3 25x2 HEADER JP3, 4, 5
1 3.5MM DC JACK JP16
1 DB 9 (short) P1
2 SM PUSH BUTTON SW1, SW2
4 1X2 HEADER J6, J7, JP13, JP14
4 SM TERM BLOCK JP6, J5, JP15
3 SM TERM BLOCK J8
4 1X3 HEADER J1, J2, J3, SW5
2 2x3 HEADER SW3/SW4, JP21
1 2X4 HEADER JP17-JP20 NOT POPULATED
1 1X5 HEADER JP4
1 2x16 HEADER JP1

2 ICE CONN JP2 NOT POPULATED
1 1X4 HEADER 10/11 NOT POPULATED
1 1X2 HEADER 12 NOT POPULATED
1 2x3 HEADER 7/8/09 NOT POPULATED
 RESISTORS

1 330 OHM ½ W R6

31

1 100 OHM 1/4W R1 NOT POPULATED
1 10K 1/4W R11
2 10K 1/4W R9, 10 NOT POPULATED
1 8.2K GANG (10) R4
1 8.2K GANG (8) R5
1 20K POT R3
1 10K (6 GANG) R2
2 1K R7, R8
 VARISTOR

2 ZNR V1, V2
 SOCKETS

1 8 PIN SOCKET U1
1 16 PIN SOCKET U4
2 32 PLCC U6, U7
2 32 PIN SOCKET U8, U9
 ICS

1 ST10F168/ 167CR U3
1 PCA82C250TD U5
1 DS1233 U2
1 LM7805-TO220 U10
1 LM7812-TO92 U11
1 RS232 U4
2 62C256 / 6281000 U8. U9
1 5 MHz CLOCK U1

32

12.2 Part Cross Reference, December 2000

 Designator Component Library Reference Sheet
1 C1 10nF CPU.SCH
2 C2 10nF PWR.SCH
3 C3 10nF PWR.SCH
4 C4 10nF PWR.SCH
5 C5 10nF PWR.SCH
6 C6 10nF PWR.SCH
7 C7 10nF PWR.SCH
8 C8 10nF PWR.SCH
9 C9 10nF PWR.SCH
10 C10 10nF PWR.SCH
11 C11 10nF PWR.SCH
12 C12 10nF PWR.SCH
13 C13 10nF PWR.SCH
14 C14 10nF PWR.SCH
15 C15 10nF PWR.SCH
16 C16 10nF PWR.SCH
17 C17 10nF PWR.SCH
18 C18 10nF PWR.SCH
19 C19 10nF PWR.SCH
20 C20 10nF PWR.SCH
21 C21 10nF PWR.SCH
22 C22 10nF PWR.SCH
23 C23 10nF PWR.SCH
24 C24 10nF PWR.SCH
25 C25 10nF PWR.SCH
26 C26 10nF PWR.SCH
27 C27 10nF PWR.SCH
28 C28 10nF PWR.SCH
29 C29 1uF CPU.SCH
30 C30 1nF CPU.SCH
31 C31 22uF CPU.SCH
32 C32 1uF SER.SCH
33 C33 1uF SER.SCH
34 C34 1uF SER.SCH
35 C35 1uF SER.SCH
36 C36 47uF PWR.SCH
37 C37 47uF PWR.SCH
38 C38 47uF PWR.SCH
39 C39 47uF PWR.SCH
40 C40 100uF PWR.SCH
41 C41 10nF PWR.SCH
42 C42 10nF PWR.SCH
43 C43 10nF PWR.SCH
44 C44 220uF PWR.SCH
45 C45 10nF PWR.SCH
46 C46 100uF PWR.SCH
47 C47 10nF PWR.SCH
48 C48 47uF PWR.SCH
49 C49 10nF PWR.SCH
50 D1 1N4001 PWR.SCH
51 D2 PWR PWR.SCH
52 D3 VPP PWR.SCH

33

53 D4 RSTOUT ICE.SCH
54 D5 BR PWR.SCH
55 J1 VAREF CPU.SCH
56 J2 VAGND CPU.SCH
57 J3 RS232 SER.SCH
58 J4 SSC SER.SCH
59 J5 CAN SER.SCH
60 J6 CANTXD SER.SCH
61 J7 CANRXD SER.SCH
62 JP1 RSTOPT OPT.SCH
63 JP2 ICE ICE.SCH
64 JP3 MEMORY PIO.SCH
65 JP4 I/O PORTS PIO.SCH
66 JP5 XI/O PORTS PIO.SCH
67 JP6 POWER PWR.SCH
68 JP7 NMI CPU.SCH
69 JP8 RIN CPU.SCH
70 JP9 ROUT CPU.SCH
71 JP10 RD CPU.SCH
72 JP11 RDY CPU.SCH
73 JP12 HOLD CPU.SCH
74 JP13 VPPON PWR.SCH
75 JP14 EA# CPU.SCH
76 JP15 13.5VAC PWR.SCH
77 JP16 13.5VAC PWR.SCH
78 JP21 VPPOPT PWR.SCH
79 L1 EMI PWR.SCH
80 P1 RS232 SER.SCH
81 Q1 2N7000 ICE.SCH
82 R1 100 CPU.SCH
83 R2C 10K MEM.SCH
84 R2B 10K MEM.SCH
85 R2A 10K CPU.SCH
86 R3 RS SER.SCH
87 R4 8.2K OPT.SCH
88 R5 8.2K OPT.SCH
89 R6 330 PWR.SCH
90 R7 1K PWR.SCH
91 R8 1K ICE.SCH
92 R9 10K SER.SCH
93 R10 10K SER.SCH
94 R11 10K CPU.SCH
95 SW1 RESET CPU.SCH
96 SW2 NMI CPU.SCH
97 SW3 ROMMAP MEM.SCH
98 SW4 RAMMAP MEM.SCH
99 SW5 RAMSIZE MEM.SCH

100 U1 5MHz CPU.SCH
101 U2 DS1233 CPU.SCH
102 U3 10F167/168 CPU.SCH
103 U4 MAX232 SER.SCH
104 U5 82C250 SER.SCH
105 U6 AM29F040 MEM.SCH
106 U7 AM29F040 MEM.SCH
107 U8 HM628512 MEM.SCH

34

108 U9 HM628512 MEM.SCH
109 U10 LM7805 PWR.SCH
110 U11 LM7812 PWR.SCH
112 V1 ZNR PWR.SCH
113 V2 ZNR PWR.SCH

35

13 TOP OVERLAY AND SCHEMATICS

