RMB166-FLI
USERS GUIDE

Version 1.01

OCTOBER 1996

RIGEL CORPORATION
PO Box 90040
Gainesville, Florida 32607
(352) 373-4629
FAX (352) 373-1786
http://www.Rigelcorp.com

(C) 1996 by Rigel Corporation.

Legal Notice:

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Rigel Corporation.

The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its compatibles.
IBM PC is a trademark of International Business Machines, Inc. MS Windows is a trademark of Microsoft,
Inc.

Information in this document is provided solely to enable use of Rigel products. Rigel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Rigel products except as
provide in Rigel's Customer Agreement for such products.

Rigel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Rigel retains the right to make changes to these specifications at any time without notice.
Contact Rigel Corporation or your Distributor to obtain the latest specifications before placing your order.

Our Policy:

We attempt to up date all software, software manuals, and hardware manuals every 3-6 months. If there
is a problem with the software or documentation it is corrected immediately. The newest version is then
put on our home page (http://www.rigelcorp.com) with the date noted. Documentation is coded with
version number, and a date. The version number is the version of the board (V1.0), and the date
(September 1996) refers to the last date the document was written.

We welcome any and all comments about our products.

WARRANTY

RIGEL CORPORATION- CUSTOMER AGREEMENT

1. Return Policy. This return policy applies only if you purchased the RMB-16x board directly
from Rigel Corporation. If you are not satisfied with the items purchased, prior to usage, you may return
them to Rigel Corporation within thirty (30) days of your receipt of same and receive a full refund from
Rigel Corporation. You will be responsible for shipping costs. Please call (352) 373-4629 prior to
shipping. A refund will not be given if the READS package has been opened.

2. Limited Warranty. Rigel Corporation warrants, for a period of sixty (60) days from your receipt, that
READS disk(s), hardware assembled boards and hardware unassembled components shall be free of
substantial errors or defects in material and workmanship which will materially interfere with the proper
operation of the items purchased. If you believe such an error or defect exists, please call Rigel
Corporation at (352) 373-4629 to see whether such error or defect may be corrected, prior to returning
items to Rigel Corporation. Rigel Corporation will repair or replace, at its sole discretion, any defective
items, at no cost to you, and the foregoing shall constitute your sole and exclusive remedy in the event of
any defects in material or workmanship.

THE LIMITED WARRANTIES SET FORTH HEREIN ARE IN LIEU OF ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

YOU ASSUME ALL RISKS AND LIABILITY FROM OPERATION OF ITEMS PURCHASED AND
RIGEL CORPORATION SHALL IN NO EVENT BE LIABLE FOR DAMAGES CAUSED BY USE OR
PERFORMANCE, FOR LOSS PROFITS, PERSONAL INJURY OR FOR ANY OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES. RIGEL CORPORATION'S LIABILITY SHALL NOT EXCEED THE COST
OF REPAIR OR REPLACEMENT OF DEFECTIVE ITEMS.

IF THE FOREGOING LIMITATIONS ON LIABILITY ARE UNACCEPTABLE TO YOU, YOU
SHOULD RETURN ALL ITEMS PURCHASED TO YOUR SUPPLIER.

3. READS 166 (referred to as simply READS) License. The READS being purchased is hereby licensed
to you on a non-exclusive basis for use in only one computer system and shall remain the property of
Rigel Corporation for purposes of utilization and resale. You acknowledge you may not duplicate the
READS for use in additional computers, nor may you modify, disassemble, translate, sub-license, rent or
transfer electronically READS from one computer to another, or make it available through a timesharing
service or network of computers. Rigel Corporation maintains all proprietary rights in and to READS for
purposes of sale and resale or license and re-license.

BY BREAKING THE SEAL AND OTHERWISE OPENING THE READS PACKAGE, YOU
INDICATE YOUR ACCEPTANCE OF THIS LICENSE AGREEMENT, AS WELL AS ALL OTHER
PROVISIONS CONTAINED HEREIN.

4. Board Kit. If you are purchasing a board kit, you are assumed to have the skill and knowledge
necessary to properly assemble same. Please inspect all components and review accompanying
instructions. If instructions are unclear, please return the kit unassembled for a full refund or, if you prefer,
Rigel Corporation will assemble the kit for a fee of $30.00. You shall be responsible for shipping costs.
The foregoing shall apply only where the kit is unassembled. In the event the kit is partially assembled, a
refund will not be available, however, Rigel Corporation can, upon request, complete assembly for a fee
based on an hourly rate of $50.00. Although Rigel Corporation will replace any defective parts, it shall not
be responsible for malfunctions due to errors in assembly. If you encounter problems with assembly,
please call Rigel Corporation at (325) 373-4629 for advice and instruction. In the event a problem cannot
be resolved by telephone, Rigel Corporation will perform repair work, upon request, at the foregoing rate
of $50.00 per hour.

5. Governing Law. This agreement and all rights of the respective parties shall be governed by the laws
of the State of Florida.

Table Of Contents

O NV AV A1 T 8
1.1 HARDWARE OVERVIEW ...iituiittiitteittiettessteestesstaestaessnesstasestessnestasestnssssssstteesnteesneestareennessteeesiersneesnnees 1
1.2 SOFTWARE OVERVIEW ..uiuuiiitniittiittieitaeetteestesat sttt ssan s saasastsssassstaesantsaassstssssssassstnsesanssstsssnsersneastnrens 2
1.2.1 READSI166 EVAlUALION SOFWAIEccovveiiieei et e et e e e e et e e e et e e s eaae e e s eba e aeees 2
1.2.2 RIG6FLI ULIIILY SOTIWAIE......coiiiiiiieiiiiit ettt e et e et e e e e e e e nbe e e e e nees 3
IR oY = TN I 1S PSS 3
2. QUICK START TUTORIAL ... ssss s ssssssssssssss s sssssssssssensnnn aeenenaeenannas 4
2.1 SYSTEM REQUIREMENTS FOR READS166 AND RLIBBFLI......couiiiiiiiiiiiiii et 4
2.2 SOFTWARE INSTALLATIONttuituittteettiettaeettaeestsssasssa s esaaassba e saa st saase st esaasssa s saa s saa s st sssnnssssssansersnesstarees 4
D R A I 131 G N 4
A = 1< o TR 4
DG TS Y 2 3 = PPN 4
2.4 CONFIGURING READS166 AND INITIATING HOST-TO-BOARD COMMUNICATIONScvvniiiniiiieeiieeeieeeieeeaieees 5
2.5 BOOTSTRAPPING «..uuuiittiiitettt ettt et eee ettt eeae e st ee et et st e e st e s s s s ta e st ssaa e st e eaansstaestaessnsestnseannesssssansersnestnrenen 5
2.6 VERIFYING THAT THE MONITOR IS LOADED.......cuuuiiittiiiiiete e et e e ettt e e et e e s e aae e s sete e e e saa e e ssasasssebtsessanaeesees 5
2.7 ASSEMBLING FILES ...itutiitiiiiiiiiii et iee s e eae et e ettt e s e e ettt e e ae e st e e st s s e b e e st e saa e s ba e s aa e ebn e st s sanesaassanersneessenen 5
2.8 DOWNLOADING PROGRAMS ...ttt ittt ettt e et e et et e e et e st e et a e saa s e ba s s b s s eba e st s eaassaassanesaneasbaans 6
2.9 RUNNING A PROGRAM. .. .cctuiiitiittietiee it e tae st e ettt etst e ettt e s aae st re st ssstase st e saassta e stasseansestssanesssaestnsessnesstnreen 6
B2t KO ST TN 1= = TN 7
3. OPERATING NOTES ... ittt ettt ettt et e et e e ettt e e ettt s e e eeaeee s et e e e e aba e e ssaan s ssbanssabasesssannseseren 8
BT N e TR = 0.V = TN 8
G Y = =11 Y I = 0] = S T PN 9
T N =t T o [0 1) RPN 9
T A AN U)N 9
G T2 TN 1 o 5 T 9
3.2.4 Troubleshooting the Serial CoONNECLIONccoovviiiiiii e, 9
T I 1 =TT 10
G TR 0 5 LG T =0 1LY 10
I B B A w - YT= 1 O 1V USRS 10
G0 T8 T 0 T N1 {1 = o7 10
3.3.4 D7, VOIAGE PUIMP etttk ettt e et bt e e e st bt e e e sabe e e e e sabb e e e e sabeebeeeesbeeeeens 11
I WY = YU 0] N3P STPTRN 11
I R = A (S) OO PO PP PPPPRPPPPPR 11
G 11 (51T) S 11
3.5 SLIDE SWITCH (SW2) ...ttt ettt ettt ekt e e e e bt e e e et et e e e st et e e e bt e e e e anbe e e e eanbeeeeennnees 11
4. JUMPER CONFIGUR ATIONS .ottt e e e e e s e e bt e et e s s b e e et e s s s saa e easeanenen 12
4.1 DEFAULT JUMPER SELECTION ..uuuittuitunittteettettnesstatestsesstssssesansssssesssessssssseesntsssseestessnestsneeesnterneesneees 12
A = I 1N N 12
T O =10 I O =L T 12
4.4 BUSACT / EBCO /T EBCL VPP .ttt et e e e e et e e s e e s e eeaa e e eaan 12
4.5 SERIAL PORT JUMPERS AND HEADER ... cuuuiittiiii ittt eeie st e et et e st e e st e st s st s e st s s sba e s sb e s aassbasesanesaneastaees 13
NN NN | 2= o o [N 1 TN 13
N | et I T (5 1 S 31 I TSSO TPUSRR 13
LI ST (0= (o] S 14
4.6 ANALOG-TO-DIGITAL CONVERTER REFERENCE JUMPERSuuuiiiitttieitttietitieeetetaeesssnsssessesssetsssessnsesesns 14
T RN | T = o Y 14
TN | = = 1o Vo [N 1 14
N 1 = O TRV = =] N 14
5. MEMORY BLOCK OPTIONS ..ottt et e e e e e e e et s e s s et e e s et e e e eaba e s saaanserebassanneaes 15
5.1 ON-CHIP FLASH MEMORY ..etuiiiuiiiiiiitiieieese e et et e e tte e et e s et e e st e sat e st s e et s e s b e eat s eaasssaestasesanssstresnnerrnnns 15
5.2 RAM MEMORY O PTIONS ittuiittiittieittiettestteestessaestsa e st staa ettt taastta e taatstaaeastteaasssaeetnseranesstresnassrnns 15

5.3 ROM MEMORY OPTIONS ..uittuiittieiiteettiietteseteestessteettttestssetresterstetttreettestaeesteesaetseeetnternessnresnerrn. 15

5.4 DEFAULT MEMORY SETTING ..uuittuitttiettuietteteteestetsieettisestessteesterstaettsresteeeteestieesaetsteetaternessnresiner. 16

(ST =N B] = 17
6.1 JP7 - SYSTEM HEADER ...uuiiitiiiiiiiiieeiiiie e e e ettt et ae et e e et e s e b e e st e s et e e bt e e et e e e b e e st s eaaeeba e etnseranssstnresnnerrnnns 17
6.2 JP8 - INPUT/OUTPUT HEADER ...uuiiiitiieeet et e ettt e e et e e e et e e e s et e e e eaaa s e e s s e e e e esba s s saba s e s sbansessabaeesnrnnees 17
7 N =0 17N 1T\ TP 19
ST =Y O O IS I R ¥ AN d = N[R 21
9. THE MONITOR PROGRAMS ...ttt et e e et e e et e e et e e e e et e e e saa s e s saaeeesebassaaaeaes 25
0.1 THE MINIMAL MONITOR ... et ittttittititee ettt et e st e e st e s s e e b s e eaa e s e b ee st e s st seba s e aa s s ba s st s e aaassbasetnesansssbnsesnnsssnnns 25
0.2 RIMONLEE MONITOR ..uuiieuunieiitieeetete e e e eet s eesea e e s et e e e saba s eesasaasesetaaeesasa s s ssanesssbassseesassesssnneeretaeesnsnnees 25
10. R1IGEFLI SOFTWARE UTILITIES ...ttt et e e e e e e et e e s s e e e s e e e e e eeseaan 28
10.1 PROGRAMMING INTERNAL FLASH . ..uuuiittiiiteiii et etee e et e s e e et e s e e e et e e et e s ab e e st e eaa e st e e st s eanessneesnerens 28
10.1.1 SEIECE A COMM POI... .ot e et e e et e e et e e e e ea e e e et e e ee b e e e esaa s saaeeeeeaaans 28
O 2 = T o 11 = o] o o PP 28
10.1.3 INSPECE FLASH SEALUSceiiiiiiiii it e e r e e e e e e s e s 29
10.1.4 INSPECE FLASH MEIMOIY ovtiiiiiiiiiiiiiiiiis ettt ettt e e e e e et ar s e e e e e e e ae b r e e e e e s e e e baba s eeeeebaans 29
TO.1.5 ClEAr FLASH BaANKvuuiiiieieiiiiete ettt e et e e et e e ettt e e st e e e e et e e e eeaa s e s et e s eee b e e eeaaa s saaseereranes 29
J1O.1.6 Erase FLASH BanKoiieiiiiiiiii et e e e e e e e st e e s et e s s eaba s e eeeabases 30
L0.1.7 Program WOPc.ueeiiiiiiee ettt ettt ettt e e ettt e e e et et e e e aab et e e e aa b et e e e anbeeeeeeeanbreeeennes 30
10.1.8 Program HEX Fil€......ccoo oo 30
10.1.9 Running Code From FLASH UPON RESEL.........ciiiiiiiieiiiiie ittt 31
10.2 PROGRAMMING THE EXTERNAL FLASH ...coet e a e e a e eeas 31
11. READS166 -- EVALUATION VERSION 2.0 ..ottt e e s e e s et e s e e e s enaas 33
I R R O 1Y oY PP 33
11.1.1 RMON166 - The READS166 MONItOr PrOgramccoccueeieiiiiieieiiiieeeiiiiee e e e e e 33
11.1.2 Ra66 - The READSILE66 ASSEMDBIETcceeeeiiiiee e e e e s e eee s 33
11.1.3 Rc66 - The READSI166 C COMPIIET ...civiiieiiiiiee ittt e 33
11.2 MAIN MENU COMMANDS ..uuiituiitntettettteettessnesstarestessteestessasstaresteesseesterstettreetareetaeestneesietieeesnnernn. 34
N R o (o1 o T PP PP PPRPUPPPON 34
0 T2 Y/ Lo o 11 | = 34
N 0] 1 4] o1 [PP PP PP PUPPPON 35
IO R I Yo | £ 35
R S @ o 1o 1 LT PP PP PP P PP PUPPPON 37
L1268 HEIP e, 38
11.3 USING THE RABGE, READSLEO0 ASSEMBLERuiiuuuiittiittteitteeittettetstessteratsstresteseteeste st 38
11.4 USING THE RC66, READSI66 C COMPILER....cuitttiiitietteiitieett e tteeetsestesstaesttessesstesstersnaessneesaeesnns 40
12, BILL OF MATERIALS ... ettt e e e e e st e e e et e e s e st e e s et e e e e et e e seneeseaaeeereranes 42
2 R Y = S N PP 42
12.2 PARTS CROSS REFERENCEctuitttiiitiittettteettaiett ettt eesaetane sttt ettt sst ettt taasttae et sttessttesnaessnesesnsernns 43

13. TOP OVERLAY AND CIRCUIT DIAGRAMS ...ttt 46

1. OVERVIEW

The RMB166-FLI industrial board features the Siemens SAB 88C166 16-
bit high-performance microcontroller in the metric plastic quad-flat pack
package. The microcontroller has 32K on board FLASH memory and is
run with a 16-bit nonmultiplexed data bus and an 18-bit nonmultiplexed
address bus. The board may be configured in several different ways
depending on the reset and ROM options chosen. The default
configuration is the 64K RAM and no ROM mode. In this mode, the
monitor or user program is downloaded to RAM using the SAB 88C166
bootstrap feature. A set of option headers, decoded by a GAL device
make the RMB166-FLI a flexible hardware platform.

The RMB166-FLI is compatible with the RMB-165i, RMB-166, RMB-166i,
RMB-167, RMB-167i and the RMB167-CRI. The board size, the location,
and function of all headers are kept the same. The RMB166-FLI has the
following improvements over the RMB-166 and RMB-166i.

1. Industrial Strength Shielding.
The printed circuit board is a six-layered board with separate VCC
and Ground planes for improved shielding designed to operate in
noisy industrial applications. The RMB166-FLI meets and
exceeds the European Community Electromagnetic and
Electrostatic Compliance requirements.
2. FLASH Memory Capability.
A. 32K on-chip FLASH Memory
B. Sockets U5 and U6 accept 29F010 FLASH chips from AMD.
C. The SAB 88C166 FLASH, and the 29F010 chips may be
programmed in circuit using the R166FLI software which is
supplied with the board.
3. Higher Memory Map Resolution.
The PALCE22V10-type device has access to A13to A17 in
determining the memory map. The memory map has a resolution of
8 Kilobytes.

1.1 Hardware Overview
» High-performance 16-bit microcontroller, the SAB 88C166

32K on board FLASH memory

Bootstrap loading feature

Runs at 40MHz oscillator frequency with zero wait states, (20MHz
internal system clock)

Internal 10-channel, 10-bit Analog-to-Digital converter

10 bits of Analog / Digital inputs (Port 5)

Two 16-bit general-purpose input/output ports (P2 and P3)
Two serial ports
16 channels CAPture and COMpare unit
» Serial ports are driven with a MAX232 and terminate at DB-9s and
a 6-post header
» Accommodates 64K or 256K of SRAM (64K installed)
* Accommodates upto 256K of FLASH ROM (not installed)
* Push buttons for RESET# and NMI#
* GAL-decoded memory map for maximum flexibility
* GAL can be reprogrammed by user or by RIGEL Corporation
* Microcontroller is socketed on the board
* Machine screw sockets under all other IC’s
 Power on LED
* LED to indicate SAB 88C166 FLASH burn in progress
* Power consumption is less than 200mA running at 40MHz
* Flexible and embeddable 4" x 6" six layer industrial board
* Mounting holes in all four corners

1.2 Software Overview

1.2.1 READS166 Evaluation Software

READS166 V2.X runs in the MS-Windows 3.1 environment. READS166
supports the bootstrap loader feature and downloads a minimal monitor
during bootstrapping. The source code and description of the bootstrap
program are included in the documentation. READS166 evaluation
software includes: a monitor program, an assembler, and a C-compiler.

RMON166 - The READS166 monitor program
RMON 166 is downloaded after bootstrapping (or it may be placed into
ROM) and supports basic memory and port functions. RMON166 allows
downloading and running applications programs. The complete source
code for user modifications or upgrades is included on disk.

Ra66 - The READS166 Assembler
Ra66 is an assembler for the C166 family of controllers. It is a multi-pass
absolute assembler which generates HEX code directly from assembly
source code.

The assembler in the demo version of READS166 limits the size of code to
about 2K.

Rc66 - The READS166 C Compiler

Rc66 is a C Compiler for the C166 family of processors. It compiles code
for the tiny memory model which fully resides in the first segment of
memory. Rc66 is a designed as a low-cost C compiler which provides a
quick development cycle for simpler applications which do not need more
than 64K of code, or the use of standard C libraries. Rc66 implements a
subset of ANSI C. Rc66 works in conjunction with Ra66: first an assembly
language program is generated from the C source, then a HEX file is
generated.

Currently, structures, unions, enumerated types, and the typedef directive
are not implemented. The C-compiler in the demo version of READS166
limits the size of code to about 2K.

1.2.2 R166FLI Utility Software

R166FLI Utility Software runs in the MS-Windows 3.1 environment.

It supports the bootstrap loader feature and downloads a minimal monitor
during bootstrapping.

R166FLlI is a utility program to program the internal FLASH memory of the
SAB 88C166 and the external FLASH memory chips on the RMB166-FLI
board. The RMB166-FLI must be bootstrapped and the special-purpose
monitor program downloaded before any other utility is used. The special-
purpose monitor was developed with Rigel’s integrated development
environment READS166. The R166FLI program should be used only
when you wish to burn the FLASH memory. Use the READS166 for code
development.

1.3 Parts List
Your RMB166-FLI package includes the following:
Hardware
1. RMB166-FLI board with 64K of static RAM.
2. Serial modem cable with adapter
Software
1. RMON166 monitor program with source code.
2. Evaluation version of READS166 for Microsoft Windows.
3. R166FLI Utility Software
Documentation
1. User’s Guide with circuit diagrams
2. Bootstrap file source code.
3. Sample programs.

2. QUICK START TUTORIAL

2.1 System Requirements for READS166 and R166FLI
READS166 and R166FLI are designed to work with an IBM PC or
compatible, 386 or better, running MS-Windows 3.1 or later.

READS166 / R166FLI use COM1 to COM4 to talk to the RST166-FLI.
These ports are driven using the default interrupt request lines assigned by
the Windows setup. Make sure that you do not have other peripherals
such as a modem or a serial mouse competing for the same interrupts.
They may cause a conflict when running READS166 / R166FLI. If you are
using a COM port which was used previously for a modem or a serial
mouse, the software drivers for these devices should be removed as well.

2.2 Software Installation

2.2.1 READS166

Place the READS166 diskette in your floppy disk drive and run INSTALL.
INSTALL may be run from a DOS prompt or from the Windows File
Manager. For example if the distribution disk is in drive A:, and you are
installing from DOS type:

A:install
Then enter the drive and directory information as requested.

To install from Windows choose Run from the Program Manager’s File
menu. Type

A:install

in the Command Line text box. Click on OK or press ENTER to begin
installation.
Then enter the drive and directory information as requested.

2.2.2 R166FLI
Please follow the above directions to install the R166FLI Utility Software.

2.3 Startup

1. Connect the RMB166-FLI to a well regulated 5 volt power supply.

2. Connect the RMB166-FLI to the PC host via a serial cable.

3. Check to make sure the bootstrap disable (BTLDIS) and the Bus
Active (BUSACT) jumpers are installed. This is the default
configuration for the RMB166-FLI and the board will be populated
this way from the manufacturer.

4. Run the READS166 host driver from MS Windows. You may use
the Windows File Manager to launch READS166. You may also
start READS166 by double clicking on the READS166 icon.

2.4 Configuring READS166 and Initiating Host-to-Board
Communications
1. Select the board and processor type using the Options | Hardware
options menu command. Choose the RMB-166i from the board list
which appears.

=| Reads166 Demo Yersion - No Project | 'l -
Project Module Compile Tools Options Help
[no project]| Hardware options +
Assembly options +
« | Compiler options -
| Sets processor and borad type

2. Open the TTY window using the Tools | TTY menu command.

3. Select the communication port parameters using the TTY | Settings
menu command. You will need to select the COM port you are
using, and the baud rate. The default configuration for the
parameters are as follows: 8 data bits, 9600 baud rate, 1 stop bit
and none for the parity bits.

2.5 Bootstrapping

Press the reset button on the board and wait 3 seconds.

2. Selectitem Tools | TTY to start the TTY window. Then from the
menu in the TTY window select Bootstrap. The board will now
bootstrap.

=

You may observe the bootstrap progress from the status line of the TTY
window. The green LED is turned on during bootstrapping, after the EINIT
instruction, but before the monitor is downloaded. When bootstrapping is
completed, the READS166 monitor prompt appears in the TTY window.

2.6 Verifying that the Monitor is Loaded

Make sure the TTY window is active, clicking the mouse inside the TTY
window to activate it if necessary. Then type the letter 'H (case
insensitive) to verify that the monitor program is responding. The 'H’
command displays the available single-letter commands the monitor will
recognize.

2.7 Assembling Files

The demo programs which come with the READS166 software will need to
be assembled before downloading to the board. Select the menu
commands Compile | Assemble file to open the screen showing which
demo programs are available.

=-| Reads166 Demo Yersion - | 'I -
Project Module Compile Tools Options Help
[no project)] Build project +
Assemble file +
«[| C Compile file +
| Azsemblas the file in the current text editor window

Select the file demo05C.ASM and press OK to assembly the file. A
screen will appear which says no errors. Assembling the program
produces a HEX file which will be downloaded to the board.

2.8 Downloading Programs

The example program demo05C.ASM repeatedly sends a message to the
host in an interrupt driven fashion. Select the Download | Download to
RAM menu item from the TTY window. A dialog box will open allowing you
to select the HEX file you wish to download.

=| Download HEX File to RAM
File Hame: Duwectones:
I * hex c:xzoohrnigel
demo01_hex + E,- s +
demo05c_hex = zoo
= rigel
[T Bead Only
+
+

List Files of Type: Drives:
[HEX files (*.hex) 2] =« E

Choose the demo program demo05C.HEX from the list of files. Press OK
to download the file. You may view the source code by opening the file as
a document using the READS166 text editor. First select the menu item
Tools | Text Edit to open the edit window. Then from the edit menu
select the File | Open menu command. This will display a list of files which
may be opened, edited, and saved.

2.9 Running a Program

1. The program demo0Q5C starts at address 4000h as specified by the
ORG pseudo operation in its source code. In order to run
demo05C, select the TTY window Run menu item. The default
address of 4000 will appear in the address field. Press OK to run
the program. Alternately, after the program is downloaded, when
the monitor prompt appears you may type G4000 to run the
program.

2. Some demo programs run in an endless loop. Press the NMI
button on the board to terminate the program and return to the
monitor. Alternatively, you may press the RESET button. In this
case, however, the bootstrapping operation must be repeated, and
the monitor program reloaded.

2.10 Using Help

You can get more information about READS166 from the help system. To
access the help system select Help | Contents from the main menu.
Once in the Help System, select the topic you are interested in for more
information.

3. OPERATING NOTES

The following block diagram of the RMB166-FLI board shows placement of
the LEDs, jumpers, headers, switches, and major ICs. It is not drawn to
scale and does not show all the components on the board. For a complete
top overlay of the board please see Section 13.

JP7
SYSTEM
BUS

PWR 55 GTRGTR
JP11 Sl S0
D6 + 5V
P2 AUX P1 HOST b po
T U2 SAB 88C166 ﬁ’
g P13 u10
S u7 -
o
o |-
JP12
p
z
o us
<
m
z
VAGND EIEGT T2
c VAREF JP1
S 40MHz Ve
3 u1
S
S
o L1 U4
w
2 o <
I Q BTLDIS z
L | P g 3
N
N
<
=
o

PGM JP3 SW3 SWi1

N3IAT NOH 9N

m CFGO L
CFG1 JP8

Ile}
D D2 D3

PORTS
RO AUX ——=
RESET

D7

g|ToeTLn

JrP10[1]

VPPON EBCOPT Sw2 NMI

Figure 3.1 Board Layout

The RMB166-FLI needs two connections: to a power supply and to the
serial port of a host via a modem cable.

3.1 JP9, Power

Power is brought to the RMB166-FLI board by a two-position screw-type
terminal block. A well regulated 5V DC (+/- 5%) source is required. The
(+) and (-) terminals are marked on the board.

Note

A +5 volt regulated power supply must be used with the
RMB166-FLI board. Lower voltage will not operate the board.
Higher voltage will irreversibly damage the active components
on the board. An unregulated power supply may cause
unpredictable failure conditions. Always check that the power
supply is plugged into the board correctly. A diode is placed
across the input in reverse. Thus if the power is applied to the

RMB166-FLI board in reverse polarity, the diode will short the
power supply attempting to prevent damage to the board.

3.2 Serial Ports

The RMB166-FLI board has two serial ports which may be accessed from
the DB9 female connectors labeled P1 (HOST), P2 (AUX), and from the
header labeled JP11.

3.2.1 P1, Host

P1, HOST is used to connect the board to an IBM compatible PC. Serial
port O transmit and receive signals (P3.10 and 3.11) are connected to one
channel of a RS-232 level converter. A minimal serial port is constructed
on the board with just the 3 lines: transmit, receive, and ground,
disregarding all hardware handshake signals. A straight-through modem
cable is used to connect with the PC Host. That is a cable connecting pin
2 of the RMB166-FLI to pin 2 of the host, and similarly pin 3 to pin 3, and
pin 5 to pin 5. This cable and a DB9-DB25 adapter is supplied when the
board is purchased directly from Rigel Corporation.

3.2.2 P2, Aux
Serial port 1 transmit and receive lines (P3.8 and P3.9) are connected to

the DB9 connector P2. The default configuration of the board uses these
lines as general purpose digital input/output ports. To use P3.8 and P3.9
for the second

serial port, jumpers P2 AUX o e GTRGTR
must be installed HOST o6 53p1150

into the headers
labeled JP12 and
JP13. Once the
jumpers are Figure 3.2 Serial Port Connectors
inserted into the

headers, RS-232

level signals of serial port 1 are available through the DB-9 connector P2,
as well as three of the connectors of JP11.

3.2.3 JP11

JP11 provides access to the serial port signals. JP11 is a 6-pin header,
which carries the same signals as P1 and P2. JP11 is also denoted by SO
/ S1 and its 6 lines by G (Ground), T (Transmit), and R (Receive) on the
RMB166-FLI silk-screen. JP11 is intended for embedded uses of the
RMB166-FLI when P1 and P2 are not populated.

3.2.4 Troubleshooting the Serial Connection

If after applying power to the board. you are unable to communicate with it
using the READS166 software, check the following items:

1. Make sure that the PC serial port is available. See section 2.1 for
details.

2. Make sure the cables between the board and the PC, and the power
supply and the board, are making good connections.

3. Make sure you are using a straight through serial cable. Do not use
a null modem cable.

4. Make sure the READS166 software is installed properly, and that
you have selected the correct processor from the menu.

5. Check to make sure that the jumpers for BTLDIS and BUSACT are
inserted.

6. After checking these items press the reset button (SW3) on the
evaluation board, wait a few seconds, and try to run the software
again.

7. Some third party software is designed to be invoked using the NMI or
RESET signals. Pushing the RESET or NMI button on the board
should generate the correct signals to operate the software. Refer
to the third party software for further information.

3.3 LEDs
The RMB166-FLI has four LEDs which provide various information about
the board’s status.

3.3.1 D6, Power

The red LED, D6, when lit, shows power is connected to the board. If this
LED does not light up when power is applied; check for the power at the
wall socket, check to make sure you have a good connection at the
terminal block, make sure that your power supply is a well-regulated 5
volts, and that it is not plugged into the terminal block backwards.

3.3.2 D2, Reset Out

The green LED, D2, marked RO (Reset Out) is connected to a GAL
device. The LED is turned on after system initialization is completed.
More specifically, the LED is turned on when the RSTIN# is high and
RSTOUT# makes a 0-to-1 transition, which normally follows an EINIT
instruction. The LED RO will be off and remain off until the bootstrap
loader successfully completes loading the bootstrap file into RAM.

3.3.3 D3, Auxiliary

10

The yellow LED, D3, is an auxiliary LED, whose state is determined by the
GAL equations. For example the user may program the yellow LED to
indicate the presence of a program in ROM. In the default configuration
the yellow LED is nonfunctional.

3.3.4 D7, Voltage Pump
The fourth LED, D7, next to JP10 is lit when the voltage pump is
generating the 12V output.

3.4 Push Buttons

3.4.1 Reset (SW1)

The reset button is connected to the reset pin of the processor and resets
the board. Before bootstrapping press the reset button and wait 3 seconds
to allow the processor to initialize. The board is then able to carry out the
bootstrap instructions.

3.4.2 NMI (SW3)

The NMI button (non-maskable SW3 Swi
interrupt) is connected to the bz D3

NMI pin of the processor. When E| Q Q O Q
pressed it generates a non- SwW2 v RO AU T
maskable interrupt. RMON : :

places a jump instruction at the Figure 3.3 Switches

NMI vector (address 8).

Pressing the NMI, while the RMON is present, invokes the monitor
program. This works as long as the monitor program in RAM is not
altered. Pressing the NMI button is usually sufficient to interrupt user’'s
program which are downloaded and run under RMON. Application
programs placed in ROM may use a similar scheme to initialize the system
when the NMI button is pressed.

3.5 Slide Switch (SW2)

The slide switch is inactive on the board with the factory GAL installed.
The switch is intended to be used in an application specific manner. The
user may burn the GAL to implement the switch.

11

4. JUMPER CONFIGURATIONS

4.1 Default Jumper Selection
Only two jumpers, across BTLDIS and BUSACT, are needed to use the

RMB166-FLI in the default 64K/256K RAM and no ROM mode. Both these
jumpers will be installed

when shipped from the N .

factory. c @
P Llcra1

4.2 BTLDIS % e @

This jumper connects the 2 e l D

NMI# input to the bootstrap Voy oo sve

circuitry. Removing Figure 4.1 Default Jumpers

BTLDIS physically prevents
the processor from entering the bootstrap mode.

4.3 CFGO/CFG1

CFGO/ CFG1 are used to select the external FLASH memory mapping.
There are two default memory maps for the external FLASH chips. The
firstis, 48K FLASH and the rest RAM. The second is with 32K FLASH and
the rest RAM. By inserting a jumper in CFG1, the first 48K of memory is
fetched from external ROM. This allows for the programming of the
FLASH chips using the R166FLI Utility Software provided with the board.

CFGO CFG1
Default , No FLASH, all external RAM NO JUMPER | NO JUMPER
First 48K external FLASH, rest is external RAM | NO JUMPER JUMPER
First 32K external FLASH, rest is external RAM JUMPER JUMPER

Inserting a jumper in both CFG1 and CFGO selects the first 32K of memory
to be fetched from external ROM. This configuration can be used to mimic
the internal FLASH environment with a ROM-less microcontroller. See
Section 5.3 for more information.

4.4 BUSACT/EBCO/EBC1/VPP

The external bus configuration and the internal ROM use are determined at
reset before the end-of-initialization instruction. There are three processor
pins BUSACT#, EBCO and EBC1, involved in selecting the bus
configuration at reset. These pins are brought to the jumper JP3. JP3 has
four pairs of posts. The first two are connected to BUSACT# and EBCO.
Inserting a jumper into the corresponding position grounds the associated
pin. The EBC1 pin of the microcontroller is connected to VCC by a 10K
pull-up resistor. EBC1 is brought to the bottom two pins of the jumper JP3.
The position of JP3 marked EBC1 is used to connect EBC1 to GND

12

(ground or 0 Volts). The bottom position of JP3 marked VPP is used to
connect EBC1 to VPP. The following table is a partial list of the most often

used reset options.

Reset Options
BUSACT# EBCO EBC1 VPP
INTERNAL MEMORY DISABLED JUMPER NO JUMPER | NO JUMPER | NO JUMPER
INTERNAL ROM ENABLED NO JUMPER JUMPER JUMPER NO JUMPER
PROGRAM ON-CHIP FLASH JUMPER NO JUMPER | NO JUMPER JUMPER
NOTE

Care must be taken not to populate the two positions, EBC1
and VPP at the same time. Populating both EBC1 and VPP
will cause the output of the voltage pump to be grounded.

For more details on the external bus configuration please see the

Siemens SAB 80C166 Data Book.

4.5 Serial Port Jumpers and Header
The serial ports are driven by U10, an RS-232 driver. Serial port O transmit

and receive signals (P3.10 and 3.11)
are connected to channel 1 of U10.
Serial port 1 transmit and receive lines
(P3.8 and P3.9) may be used to drive
the second channel of U10 or be used
as general purpose digital input/output
ports. The default configuration of the
board uses these lines as 1/O lines.

451 JP12 and JP13

Jumpers JP12 and JP13 connect serial
port 1 transmit and receive signals to
channel 2 of U10. Once jumpers JP12
and JP13 are inserted into the headers,
RS-232 level signals of serial port 1 are
available through the DB-9 connector
P2, as well as three of the posts of
JP11.

4.5.2 JP11(S0/S1)

JP11 provides access to the serial port
signals. JP11 is a 6-pin header, which
carries the same signals as P1 and P2.

JP11 is also denoted by SO/ S1 and its 6 lines by G (Ground), T

13

GN
VAGND
varer E—

VCC

w

D
JP2

JP1

P3 P2

POLpwrTTO N® O

= o

QOAomhmmégpmmbmm\lmw

JP81/0

Figure 4.2 Serial Port and

A/D Jumpers

(Transmit), and R (Receive) on the RMB166-FLI silk-screen. JP11 is
intended for embedded uses of the RMB166-FLI when P1 and P2 are not
populated.

4.5.3 Sl0and SI1

Pins S1I and S10 on header JP8 are connected to the input and output of
Serial Port 1 after the MAX232 level converter. These signals are identical
to those on JP11. The jumpers JP12 and JP13 must be inserted to use
Si1l and S10 as RS232 level signals.

4.6 Analog-to-Digital Converter Reference Jumpers
The analog-to-digital converter requires a ground and reference voltage to
operate.

4.6.1 JP8 (VG and VR)

The reference voltages may be provided either from JP8 lines marked VG
(ground reference voltage) and VR (reference voltage), or connected to the
+5 volt TTL supply.

4.6.2 JPland JP2

Jumpers JP1 and JP2 select the source of reference voltages. The center
posts of JP1 and JP2 are connected to the SAB 88C166 VAREF and
VAGND inputs. Post 1 of JP1, marked VCC is connected to the +5 volt
supply. Thus, connecting this post with the center post selects VAREF to
be the same as the +5 volt supply. In the alternate position, VAREF is to
be supplied from JP8 from the terminal marked VR. Similarly, the post
marked GND of JP2 is connected to the ground of the supply. Connecting
the center post of JP2 with the post marked GND selects VAGND to be the
same as the ground of the supply voltage. In the alternate position, the
ground reference is to be supplied from the JP8 terminal marked VG.

4.7 JP10, VPPON

The RMB166-FLI board contains a voltage pump to generate a well-
regulated 12V from the 5 Volt supply. The voltage pump, built around the
LM1301 chip is activated by inserting a jumper at JP10, designated as
VPPON on the board. The LED (D7) next to the jumper is lit when the
voltage pump is generating the 12V output. (Note that the output of the
voltage pump is 5V when the jumper is removed.) Although the voltage
pump should probably be disabled when not programming or erasing the
FLASH memory, leaving it on will not harm the board.

14

5. MEMORY BLOCK OPTIONS

There are three blocks of memory available on the RMB166-FLI board.
There is the on-chip 32K (internal) FLASH block of memory, there is a
RAM block which may hold upto 256K of memory, and there is a ROM
block which may hold up to 256K of (external) FLASH memory.

5.1 On-Chip FLASH Memory

The SAB 88C166 has 32K of on-chip FLASH memory. The RMB166-FLI
board is designed to provide the 12 volts needed to program the FLASH.
The RMB166-FLlI is sold with software, the R166 Utility Software,
especially written to program the FLASH. The on-chip FLASH has 4
memory banks of 8K each, which may be programmed separately. Please
refer to the SAB 88C166 data book for details of the FLASH memory. See
Section 10, for directions on how to program the FLASH using the R166FLI
Utility Software.

5.2 RAM Memory Options

The RAM block of memory is designed to take static RAMSs, either 32K
62C256-type, or 128K 681000-type static RAM chips. Alternately battery-
backed RAMs may be used in the RAM block. Two chips are needed, one
for EVEN and the other for ODD addresses. These chips are placed in the
32-pin sockets marked U7 and U8. Place 28-pin RAM devices closer to
the 2 X 25 header, away from the processor. Programs may be
downloaded to the RAMs and run, using the READS166 software which
comes with the board. Alternatively you may use third party software to
download and run programs on the board.

The SAB 88C166 may be programmed to insert wait cycles during external
memory access. However, in order to run the SAB 88C166 at its full
potential of 40MHz, the RAMs should be rated at 70 nano seconds or
faster.

5.3 ROM Memory Options

The ROM block of memory accepts industry-standard 29F010 Flash
EEPROMSs providing 256K ROM. Two chips are needed, one for EVEN
and the other for ODD addresses. These chips are placed in 32-pin PLCC
sockets marked U5 and U6. The chip enable signals for the ROM are
generated by the 22V10 GAL. A variety of memory maps are achievable
simply by modifying the equations and reprogramming the GAL. The GALs
are programmed with two default memory maps which are activated by
inserting jumpers into CFGO and CFG1. When CFG1 is populated with a
jumper, the first 48K of memory is fetched from the external ROM. If both
jumpers, CFGO and CFG1 are inserted, the first 32K of memory is fetched

15

from external ROM. In either case, the remainder of the memory is
mapped into RAM. Thus, with both CFGO and CFGL1 populated, the
memory map is identical to the case of using the evaluation board with the
32K internal FLASH memory. This configuration is useful in simulating the
environment with a ROM-less microcontroller.

The industry-standard external Flash EEPROMSs are placed into a write
mode by writing to addresses around 5555h and AAAAh. These write
operations activate an unlock sequence which allows subsequent write
operations. If you wish to program the EEPROMSs, the R166FLI Utility
Software may be used. See Section 10 for directions.

The default GALs allow the use of upto 48K of external FLASH. The GALs
can be reprogrammed to implement a very wide variety of memory maps.
Please contact RIGEL Corporation if you have questions about the
possibly memory maps, or if you require assistance in programming the
GALs.

5.4 Default Memory Setting

The default jumper settings assume 64K of RAM with no ROM. In this
configuration, the board is bootstrapped and programs are downloaded
into RAM and then run. Except for the BTLDIS, and the BUSACT jumpers,
no other jumpers are needed.

16

6. HEADERS

The RMB166-FLI board has three headers: the input/output port header
JP8, the system header JP7, and the serial port header JP11. JP7
contains the address, data and control busses. Ports 2, 3, and 5 are
available on JP8. Individual signals of these headers are listed below.
The tables reflect the physical orientation of the headers and the
enumeration of their individual posts. Pin 1 may be identified as the post
with the square pad on the printed circuit board. The headers are also
labeled on the board to make pin identification easier.

The location of these headers and the signals on the headers remain the
same between all of the RMB-16x boards in this series. Any external
board designed to plug into the RMB166-FLI board will be pin-to-pin
compatible with all of the other RMB-16x boards.

6.1 JP7 - System Header

Signal Pins Signal
Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)
DO 5 6 A0
D1 7 8 Al
D2 9 10 A2
D3 11 12 A3
D4 13 14 A4
D5 15 16 A5
D6 17 18 A6
D7 19 20 A7
D8 21 22 A8
D9 23 24 A9
D10 25 26 A10
D11 27 28 All
D12 29 30 Al12
D13 31 32 Al13
D14 33 34 Al4
D15 35 36 Al15
RD# 37 38 Al16
ALE 39 40 Al7
RSTIN# 41 42 WR#
RSTOUT# 43 44 BHE#
NMI# 45 46
47 48
49 50

Note that pins 46-50 are not connected to any signals.
6.2 JP8 - Input/Output Header

17

Signal Pins Signal
Ground 1 2 VCC (+5V)
Ground 3 4 VCC (+5V)
P5.0 5 6 P5.1
P5.2 7 8 P5.3
P5.4 9 10 P5.5
P5.6 11 12 P5.7
P5.8 13 14 P5.9
VAGND 15 16 S1i
VAREF 17 18 S10
P2.0 19 20 P3.0
P2.1 21 22 P3.1
pP2.2 23 24 P3.2
P2.3 25 26 P3.3
P2.4 27 28 P3.4
P2.5 29 30 P3.5
P2.6 31 32 P3.6
pP2.7 33 34 P3.7
P2.8 35 36 P3.8
P2.9 37 38 P3.9
P2.10 39 40 P3.10
P2.11 41 42 P3.11
pP2.12 43 44 P3.12
P2.13 45 46 P3.13
P2.14 47 48 P3.14
pP2.15 49 50 P3.15

18

7. GAL EQUATIONS
A PALCE22V10 is used for the board logic.

#TI TLE BDC166

#ENG NEER SRH

#COWPANY Rigel Corporation
#REVI SION 2

#PROQIECT 166- FLI

#COWMMENT 10/ 07/ 96

#CHI P W - PALCE22V10
Settings for CFA and CFGl (0 = no junper)
Nor mal 0O | O “No ROM, all external RAM
|
First48K ROM 0 | 1 “ First 48K is external ROM,

| “rest is external RAM

I
First32KROM 1 | 1 “ First 32K is external ROM,
“rest is external RAM

B T PIN Declarations ----------------------

INPUT AO, Al4, Al5, Al6, A17, BHE_, RSTOUT_, RSTIN_, USERMON,
ALE, CFGO, CFG1,;

OUTPUT RASH_, RASL_, ROSL_, ROSH_, MA16, MA17, PLUG, BTLN, BTLED,

PLUG_;

R Bool ean Equation Segnent ---------------
IF (CFGO * CFG1) THEN “No ROM, all RAM

RASH_ =BHE_;

RASL_ = AO;

ROSH_ =1;

ROSL =1,

MA16 = Al6;

MA17 =Al7;
ELSIF (CFGO * /CFG1) THEN “ First 48K is external

“ROM, rest is RAM.

ROSH_ = BHE_ + ((A17 + A16 + A15) * (A17 + Al16 + /A15 +
AT4)):;

ROSL_ = A0 + ((A17 + A16 + Al15) * (A17 + A16 + /A15 + Al4));

RASH_=/(/BHE_* ROSH); “If it is not external
“ROM, it is external
RAM

19

RASL_ =/ (/A0 * ROSL); “If it is not external
“ROM, it is external

RAM
MA16 = A16;
MA17 = A17;
ELSIF (/CFGO * /CFG1) THEN “First 32K is ROM, rest
“is RAM
ROSH_=BHE_ + (Al17 + A16 + A15);
ROSL_=A0 + (Al7 + Al6 + A15);
RASH_ = /(/BHE_* ROSH); “If it is not external
“ROM, it is external
RAM
RASL_ =/(/A0 * ROSL_); “If it is not external
“ROM, it is external
RAM
MA16 = A16;
MA17 = Al7;
END IF;

“ Remaining equations implement the bootstrap logic

PLUG =/(RSTIN_* PLUG);
PLUG_ = /(/RSTOUT_ * PLUG);
BTLN = /ALE * PLUG;

BTLED = PLUG;

20

8. BOOTSTRAPPING

The SAB 88C166 bootstrap loader is invoked by the following sequence of
signals after a hardware reset:

1. Pull ALE high
2. Activate the non-maskable interrupt by a high to low transition

These two signals are generated by the RMB166-FLI hardware. The ALE
Is connected to a 1K pull-up resistor. Upon reset, while the ALE is
sampled, it is read by the microcontroller to be at logic level high. Next, the
microcontroller configures the ALE as an output. The ALE is driven low, to
be pulsed high for address latches. The RMB166-FLI logic detects this
high to low transition (input to output configuration) of ALE and uses this
signal to drive NMI# (non-maskable interrupt) to the logic level low. The
RMB166-FLI logic also inspects the state of RSTIN# and RSTOUT#. The
activation of RSTIN# also triggers the events described above. Some code
is downloaded to the microcontroller during bootstrap. This code contains
an EINIT instruction. The execution of EINIT activates the RSTOUT#
signal. The RMB166-FLI logic uses this signal to disable further bootstrap
load operations. That is, disable the activation of NMI# every time ALE is
low.

The RMB166-FLI logic which performs the bootstrap load operation is
embedded in the GAL equations of U4. (Refer to the GAL equation in
section 7.)

Note that the GAL which controls the bootstrap load operation is also
responsible for turning on the LED. In its default implementation, the LED
is lit once the RSTOUT# signal is activated. For specific applications, the
user may alter the operation of the bootstrap logic by altering the GAL
equations.

Once the bootstrap loader is invoked the serial port SO is used to
communicate with the SAB 88C166. The host must first send a 0 byte with
8 data bits, 1 stop bit and no parity bits. The SAB 88C166 responds with
the byte 55h (the ASCII character 'U’). Then the host expects 32 bytes of
code to be downloaded to internal RAM starting at address OFA40h and
run.

Since 32 bytes is not enough to initialize and configure the SAB 88C166

and then download a user program, a secondary loop is used. This loop is
a short piece of code that is placed starting at address OFA60h, so that

21

when the 32 bytes of primary code are executed, the program continues
with the secondary loop. The approach is described in more detail below.

The 32 bytes downloaded are, in hexadecimal,

E6 FO 60 FA
9A B7 FE 70
A4 00 B2 FE

B4 00 BO FE
86 FO BB FC

which correspond to the following short code.
origin is OFA40h

nov RO, #O0f a60h
WD:

j nb SORIR, W

nmovb [RO], SORBUF

bcl r SORI R

novb SOTBUF, [RO]

cnpi 1 RO, #O0f cbb ; read 604 bytes

j nmpr CC_NE, W

nop

nop

nop

nop

Note that the NOP (no operation) operations are required to fill the 32
bytes, since the bootstrap loader remains active until all 32 bytes are
received. When the bootstrap loader receives its last byte and places it in
address OFA5Fh, it makes a jump to OFA40h and starts executing the
code. This is the short loop given above. Note that at this time the internal
RAM starting from OFA60h does not contain any relevant code.

The short loop takes advantage of the serial port SO which is already
initialized. It waits for a user specified number of bytes, 604 bytes in this
case, and places these bytes consecutively starting from internal RAM
location OFA60h. When the loop is done (all 604 bytes received) the
program continues, executes the NOP operations and then starts
executing code from OFA60h on. Thus the 604 bytes loaded by the
secondary loop are also interpreted as code.

22

The user may alter the number of bytes to be loaded by changing the 21st
and 22nd bytes (BB and FC) which give the address (the low byte, followed
by the high byte) of the last byte to be read by the loop. Note that there is
a practical limit to the number of bytes that can be downloaded by this
loop: the PEC source and destination pointers as well as the SFRs which
occupy addresses FDEOh and above must not be overwritten by data
bytes.

Due to the powerful instruction set of the SAB 88C166, a lot of functionality
can be implemented within 604 bytes of code. The 604 bytes contained in
the file BTL.DAT downloads a minimal monitor program. This program
contains an initialization routine, subroutines to send and receive
characters through the serial port, a subroutine to download code in the
Intel Hex format, and a subroutine to jump to any location within the 64K
segment. The latter two are invoked by single-letter commands.

The 604 byte-code may be broken down into four sections.
1. Initialization code to be executed after the 32-byte bootstrap
2. Code to be written starting at address 0 to be executed after the
software reset.
3. The minimal monitor to be placed starting at address 8000h
4. The software reset (SRST) instruction to leave the bootstrap mode.

Sections 1 and 4 are somewhat different than sections 2 and 3. The bytes
downloaded in sections 1 and 4 are actual instructions which are executed
after the 32-byte bootstrap load is completed. Sections 2 and 3 are
Instructions to poke bytes into memory. More specifically, in section 2,
bytes are written to memory locations starting from address 0. In section
3, from address 8000h. The bytes placed into memory locations starting
from address 0 is executed after the software reset instruction. This is an
initialization program which, upon completion, branches to address 8000h
to execute the minimal monitor program.

For example, the initialization code starting at address 0 begins with the
two instructions

DI SWOT
EINIT

whose machine instructions are
(A5 5A A5 A5) and (B5 4A B5 B5),

23

respectively. The code within the 604-byte download block pokes these
bytes starting from address 0. That is, these instructions are placed into
memory, one word at a time, as data. The following instructions are used.

nmov R1, #O0AS55Ah ; begin: DI SWDT
mov 0, R1

mov R1, #0A5A5h

mov 2, R1

nmov R1, #0B54Ah : EINT
nmov 4, R1

nmov R1, #0B5B5h

nmov 6, R1

This pattern is used throughout sections 2 and 3. First the word is written
to register R1. Then the register is copied to memory. The file BTL.DAT
contains the bytes downloaded to the RMB166-FLI board during
bootstrapping. The file BTL.SRC contains the source code.

The initialization routines configure the SYSCON register. The internal
ROM is disabled and the external bus is activated. Next the CSP and DPP
registers are initialized. These steps need to be completed before the
EINIT instruction. Note that if the watchdog timer is to be disabled; this too
must be done before the EINIT instruction. The final step of initialization
consists of configuring port bit 3.13 as an output port. This pin is used as
the WR# signal to put data into external RAM.

24

9. THE MONITOR PROGRAMS

9.1 The Minimal Monitor
The minimal monitor is placed by the bootstrap loader starting at address
8000h. The monitor responds to two single-letter commands 'D’ and 'G’.
The 'D’ command places the monitor in a download mode. Code in the
Intel Hex format is expected. Code may be downloaded anywhere in the
first 64K segment. The 'G’ (Go) command expects 4 hexadecimal
characters. These 4
characters specify an send greeting and cursor

address within the first 64K and wait for a character
segment. Ajump is
performed to this address. If
a user program is
downloaded (using the 'D’
command), say at address Yes

0C000h, then the GCO00 'D' received? Download Intel
command branches to the Hex code
user program. In many
cases, the user program is
the application program or a
monitor program, such as
RMON166, and hence, the
minimal monitor is no longer
required. If, however, the
user program wishes to 'G' received?
return to the minimal monitor,
it should branch to address
8000h. Note that the minimal
monitor initializes the stack,
so either a call or a jump to

Yes

r Jump to XXXX

No

address 8000h would work
The minimal monitor is a loop that executes the above flowchart

9.2 RMON166 Monitor

The monitor program RMON166 allows inspecting and modifying the first
64K segment of RMB166-FLI memory, configuring the ports, inputting and
outputting from the general purpose ports, downloading code in the Intel
Hex format, and branching to user code. RMON166 features are invoked
by single-letter commands. RMON166 assumes a 40Mhz system crystal.
Serial port 0 is initialized to run at 9600 Baud with 8 bits of data, 1 stop bit
and no parity bits.

25

RMONL166 is intended to be downloaded after bootstrapping the RMB166-
FLI board. RMON166 is placed starting at address 0C0O00h. The first 256
bytes are reserved for monitor variables. The entry point to RMON166 is
at address COOOH or C100h. To set up RMON166, initialize READS166
and the RMB166-FLI board and invoke the Bootstrap command as
explained in the previous section. From the TTY menu, select Download
to download RMON166.HEX. Branch to and execute RMON166 using the
Run command under the TTY menu. Specify address COO0OH or C100h
since the entry point to RMON166 is at 0C000h. Note that RMON166
places a jump to COOOH or C100h at the nonmaskable interrupt vector.
Thus, RMON166 may subsequently be invoked by pressing the NMI
pushbutton on the RMB166-FLI. RMONL166 initializes the stack and resets
the interrupts. Thus, even after the NMI button is pressed, RMON166
clears the NMI interrupt by executing a dummy ’return from interrupt’
instruction.

Alternatively, RMON166 may be placed in the ROM memory block and
invoked upon reset. The source code for RMONL166 is given on the
distribution disk. RMON166 is not optimized for speed or size, but rather
for clarity and pedagogical value. Legal users are encouraged experiment
with, make modifications to, or use portions of the RMON166 in their
applications.

The single-letter commands of RMON166 are explained below.

D Download HEX file

The D command places RMON166 in a download mode. The monitor
expects to receive code in the Intel Hex format through serial port 0. The
download mode is terminated when the last line of Intel Hex code is
received (when the byte count is 0).

C Port Configuration

The C command is used to configure the ports, i.e., the port direction
registers DPnn. Cn displays the current setting of DPn. Cn=mmmm writes
the word mmmm to register DPn.

G Go

The user code at address xxxx is branched to by the Gxxxx command.
Note that the user program may return to RMON166 by a branching
instruction to address 0C000h. RMON166 initializes the stack, thus, either
a jump or a call instruction may be used to return to RMON166.

H Help
The H command displays a summary of available monitor commands.

26

M Memory

The first 64K segment of the RMB166-FLI memory may be inspected or
modified by the M command. The M command is also useful to poke short
programs into memory.

M XXXX displays the current contents of memory address XXXX.

M XXXX=nn inserts the byte nn into memory address XXXX. When this
command is used, RMON166 displays the current contents as well as the
new contents. The address XXXX is incremented and the current contents
of (XXXX+1) are displayed. Consecutive bytes may be written starting at
XXXX. The process is terminated if a carriage return or an illegal
hexadecimal digit is keyed in.

M XXXX-YYYY displays the block of memory between addresses XXXX
and YYYY.

M XXXX-YYYY=nn fills the memory block XXXX to YYYY with byte nn.

P Port Data

The P command is used to read from or write to the ports. Pn displays the
current value of port n. If port n is an input port, then the value read is the
current voltage levels applied to the ports. If port n is an output port, Pn
returns the current output value to port n. Pn=mmmm sets the current
value of output port n to mm.

Note that individual bits of the ports may be programmed as input or
output. Thus, the word returned by Pn gives the external voltage levels
applied to the input bits and the current values of the output bits.

w Word Memory

This command is identical to the M command, except that the memory
contents are displayed and modified as words (2 bytes). Words start at
even address.

27

10. R166FLI SOFTWARE UTILITIES

R166FLlI is a utility program to program the on-chip FLASH memory and
the FLASH memory devices on the RMB166-FLI board. The RMB166-FLlI
must be bootstrapped and the special-purpose monitor program be
downloaded before any other utility is used. The special-purpose monitor
was developed with Rigel’'s integrated development environment
READS166. Many of the functions of the special-purpose monitor are
accessible by single-letter commands. Press 'H’ for a list of single-letter
commands the monitor recognizes.

10.1 Programming Internal Flash

Below are step-by-step instructions for using the R166FLI to clear, erase,
and program individual words or to download a HEX file into the internal
FLASH memory.

10.1.1 Select a COMM Port

Use the TTY | Use Comm 1 orthe TTY | Use Comm 2 commands to
select a communications port. The window title reports the current state of
the communications port. The following screen appears showing which
comm port was selected.

=| R166FLI Utilities - COM2 [~]=
File | ITY FLASH EEPROM Help
Bootstrap only |+

Download HEX file to RAM .
Bootstrap and load monitor

Use Comm 1
+ Use Comm 2

-4-| [+

10.1.2 Bootstrapping

Only the two jumpers BTLDIS and BUSACT should be present while
bootstrapping and loading the monitor program. Leave these jumpers in
place while CLEARiIing, PROGRAMmIing, and ERASEing the FLASH
memory. Remove the two jumpers, BTLDIS AND BUSACT, to run code
from the FLASH memory upon RESET. Use the "TTY | Bootstrap and
load monitor" command to bootstrap the board. After bootstrapping, the
special-purpose monitor program R166FLI.HEX is downloaded to the
RMB-166 FLI board. You may verify that the board is responding by

28

pressing the enter key and observing the monitor prompt "10F166 >". You

may also type "“H” for a brief help screen displayed by the monitor.

10.1.3 Inspect FLASH Status

Use the menu command "FLASH | Status” or equivalently, the single-letter
command 'S' to review the current status of the four FLASH banks. Each

bank is reported to be in one of three states:

is CLEARED - all words are 0000
is ERASED - all words are FFFF

has DATA - data words are programmed into the FLASH bank

Program byte
Program word
Program HEX file

=| R166FLI Utilities - COM2 |+~
File TTY FLASH EEPROM Help
Status |+
Memory dump =
Clear 3
Erase 2

« |

10.1.4 Inspect FLASH Memory

Use the "FLASH | Memory dump" menu command to inspect a block of
256 bytes of FLASH memory. Input the block address high byte in the

dialog. You may equivalently use the single-letter command 'M' followed
by the address high byte as two hexadecimal digits. For example, "M04"

displays the block of memory [0400..04FF].

10.1.5 Clear FLASH Bank
Clearing a bank means all words in
that bank to 0000. The voltage
pump must be turned on by
Inserting a jumper in JP10,

,
H

VPPON, and inserting a jumper in PGQMW susacT il
VPP on jumper block JP3. The o EEEED
jumpers BUSACT and BTLDIS VPPON EBCOPT

G| ToeTL

0TACZIVO

U4

should remain in place. The LED
D7 will light up when the voltage
pump is turned on.

29

10.1 Jumper Settings For Clearing,
Programming and Erasing FLASH

Use the "FLASH | Clear | Bank_n" menu command to clear any one of the
four FLASH banks. The following screen appears allowing you to choose
which bank to clear.

=] R166FLI Utilities - COM2 [~]-
File TIT¥ FLASH EEPROM Help
| Status |+
Memory dump =
Clear Bank 0
Erase Bank 1
Program byte Bank 2
Program word Bank 3
Program HEX file
l hd |
[+

10.1.6 Erase FLASH Bank
Erasing a bank means programming all words in that bank to FFFF. The
voltage pump must be turned on by inserting a jumper in JP10, VPPON,
and inserting a jumper in VPP on jumper block JP3. Inserting a jumper in
VPP connects EBC1 to VPP. The jumpers BUSACT and BTLDIS should
remain in place. The LED D7 will light up when the voltage pump is turned
on. Use the "FLASH | Erase | Bank_n" menu command to erase any one
of the four FLASH banks.

Note
You must first clear the bank before you erase the bank. The READS166
demo software will force you to do this.

10.1.7 Program Word

The voltage pump must be turned on by inserting a jumper in JP10,
VPPON, and inserting a jumper in VPP on jumper block JP3. The jumpers
BUSACT and BTLDIS should remain in place. The LED D7 will light up
when the voltage pump is turned on. Use the "FLASH | Program word"
menu command to program a single FLASH word. Input the address and
data in hexadecimal in the dialog box.

You may equivalently use the single-letter command 'B’ followed by the
address and word, both as 4-digit hexadecimal numbers. For example,
"B00001234" burns the data word 1234 (hex) into the FLASH address
0000.

10.1.8 Program HEX File
The voltage pump must be turned on by inserting a jumper in JP10,
VPPON, and inserting a jumper in VPP on jumper block JP3. The jumpers

30

BUSACT and BTLDIS should remain in place. The LED D7 will light up
when the voltage pump is turned on. Use the "FLASH | Program HEX
file" menu command to download a file into FLASH memory. When this
menu item is selected the following screen appears. Input the file name of
the HEX file in the dialog box, and press OK to program the file to FLASH.

=| Download [Program) HEX File to FLASH
File Hame: Duwectones:
|=.hex c:\rigel\r1 G6fli
hello.hex * = e\ +
rmonfh. hex = rigel
""" = 1666k
[T Bead Only
¥
+
List Files of Type: Drives:
[HEX files (*.hex) 2] =« E

10.1.9 Running Code From FLASH Upon Reset
Once an executable program is downloaded into FLASH memory, it may
be invoked upon reset. Place only the two jumpers EBCO and EBC1 on
the jumper block JP3. Remove the BTLDIS and BUSACT jumpers. This
enables the ROM and maps it to segment 0.

The program must initialize the L1
SYSCON register so that

BUSACT is set and that BTYP

iIs 11b. This activates the

external bus and selects the

HNEE

16-bit non-multiplexed external PGM BUSACTJP3 \:{
bus configuration used by the D7 EBCO 5
RST166-FLI board. Note that E\E}S&i R
the SYSCON register must be PO EBCOPT o9

modified before the EINIT
instruction. Refer to the sample program HELLO.ASM for a demonstration
of these steps. You may use HELLO.ASM as a template in developing
your own embedded code. HELLO.ASM was written with Rigel’s
integrated development environment READS166.

10.2 Programming the External FLASH

The industry-standard external Flash EEPROMSs are placed into a write
mode by writing to addresses around 5555h and AAAAh. These write
operations activate an unlock sequence which allows subsequent write

31

operations. If you wish to program the external FLASH chips using the
R166FLI Utility Software you will need to place a jumper in the CFG1
position, and leave the jumpers in at the BUSACT and BTLDIS positions.

By adding a jumper in the CFG1 position you select the external FLASH
memory map of 48K ROM, and the rest RAM.

=| R166FLI Utilities - COM2 [~]=
File TTY FLASH EEPROM Help
Erase EEPROM |+

Download HEX file to EEPROM

«| |

Use the menu option EEPROM | Download Hex file to EEPROM or
EEPROM | Erase EEPROM commands to download or erase the external

FLASH memory. The R66FLI Utility Software will only burn 48K of external
FLASH.

32

11. READS166 -- EVALUATION VERSION 2.0

11.1 Overview

READS166 V2.X runs in the MS-Windows 3.1 environment. READS166
supports the bootstrap loader feature and downloads a minimal monitor
during bootstrapping. The source code and description of the bootstrap
program are included in the documentation. READS166 evaluation
software includes: a monitor program, an assembler, and a C compiler.

=-| Heads166 Demo Yersion - No Project | vi -
Project Module Compile Tools Options Help
) project] it
+
- [] -
1

READS166 V2.X has a more modular look than the previous versions.
Although the functionality of the READS166 components remain fully
integrated, the user interface has been improved by placing many of the
specific commands into sub-menus.

11.1.1 RMON166 - The READS166 Monitor Program

RMON 166 is downloaded after bootstrapping (or it may be placed into
ROM) and supports basic memory and port functions. RMON2166 allows
downloading and running applications programs. The complete source
code for user modifications or upgrades is included on disk.

11.1.2 Ra66 - The READS166 Assembler

Ra66 is an assembler for the C166 family of controllers. It is a multi-pass
absolute assembler which generates HEX code directly from assembly
source code. The assembler in the demo version of READS166 limits the
size of code to about 2K.

11.1.3 Rc66 - The READS166 C Compiler

Rc66 is a C Compiler for the C166 family of processors. It compiles code
for the tiny memory model which fully resides in the first segment of
memory. Rc66 is a designed as a low-cost C compiler which provides a
quick development cycle for simpler applications which do not need more
than 64K of code, or the use of standard C libraries. Rc66 implements a
subset of ANSI C. Currently, structures, unions, enumerated types, and
the typedef directives are not implemented. Rc66 in the demo version of
READS166 limits the size of code to about 2K. Rc66 works in conjunction
with Ra66: first an assembly language program is generated from the C
source then a HEX file is created.

33

11.2 Main Menu Commands

The Main Menu contains the commands for higher-level tasks such as
building projects or setting hardware platform options . The major tasks
are delegated to the READS166 "Tools" which may include editors, host-
to-board communications subsystems and code generators. Tools are
distinguished by their own environments including sub-menus and
accelerator keys. Tools may be minimized when not used or simply closed
until needed again.

11.2.1 Project

Projects are collections of source code modules that are compiled as a
whole. Use the project menu to create new projects, open existing projects
or save projects. Modules written in different languages may be combined
in a project.

The use of projects is optional in READS166. It is meant to simplify the
bookkeeping of the various components of larger code. For short
programs, it is often more practical to simply write the code in the text
editor and compile it without first creating a project. (The demo version
has limitations on the types and sizes of projects.)

'=| Reads166 Demo Yersion - P1 | *I <
Project Module Compile Tools Options Help

Project - P1 [P1.rpj) b
Module 1 - MAIN [Main.asm)] -
Module 2 - AD Conversion [ADC.asm]

Module 3 - Pulse Width Modulation [PWh.asm]
Module 4 - PID Controller [PID.asm]

« | -

The Project Window is the space just under the Main Menu. If a project is
currently open, a list of modules of the project is displayed. You may
resize the Project Window, or use the scroll bars to view the module list.
The "Exit" command is also under the menu "Project" option.

11.2.2 Module

Modules are chunks of code which are combined to constitute a project.
An assembly program and an "include" file, for example, may be two
modules in a project. READS166 does not require the use of modules.
You may "Create”, "Edit", or "Delete" modules of the current project using
the commands under the "Module" option. You may also "Import"
modules from other (existing) projects. The "Add Module" command lets
you select assembly or C programs which are currently not a member of
any project to be included in the current project.

34

11.2.3 Compile

The "Compile" menu commands allow you to build the current project, or
compile a single file. If the text editor holds a file, this current file is
compiled. Otherwise, a dialog box asks for a file to be compiled.
Currently, only an assembler and a C compiler are implemented. Other
language compilers are being developed.

11.2.4 Tools

Tools are the more powerful subsystems that let you carry out complicated
tasks. Tools usually have their own menus and hot-key combinations.
Currently there are two tools implemented, the "Text Editor," and "TTY
Window" which is used for communicating with the board.

Text Editor

The Text Editor is a MS Windows multi-document interface which holds
small text files. The Text Editor has its own menu with the standard File,
Edit, and Search commands. The user interface and hot-key combinations
are identical to the MS Windows Notepad program.

: Heade18E T Fdtier [=]#%]
Hie Ldit Gemich Ogliaes Help
=] CHNGELINER M S AR [=1=0
i REARELES Desc Froprsms al
LEFRE-LEP by RISEL CdapEi vkl 1
I o= el L
i Heifmiwlilla, FL, D18
T B4 E L]
uEz BOA -4
Fropram wmalide
i bk Lii - Lhia ST Rhia Aealay-be-Dlika Mm
CanvarTs ohkrn i
WS LT
HGHTT 1 1]
tha proarsm h tha S400 e el
" aaant
HATH
@alla Sl T, ADS FOLL o feRdlladl BDT GGuLLiE
slls ==, pEed
ells ne T, oelf
. ¥3, ENODOR i R lEop SduRk
slls o= M. pEUES it & bBuw
lls oo T, inksw I reem if CTL=C i@ posassd
ay -
I o HE. mmin if nos, cootdnus
B oo, HOHITOR I o= T4 Chik EAndToE
! Falled Anslop-wo-Digicel Canvsreisn Riucins
AEHG PO
-3 EICOH,. midn ¢ Frarr corvecsaian, Biegls chaonsl meds . O
ACE Eiiay =
8
= | -

The TTY WINDOW encapsulates all host-to-board communications. It has
its own menu to set the communications parameters, to bootstrap the

35

board and to download compiled programs into the RAM of the board. The
current

=| TTY - COM2:9600, N, 8, 1 ME
Settings Bootstrap Download Run
Comm Port Comm 1 Lt
Baud rate Comm 2 -
Comm 3
Comm 4
*
[[+
| | RSPM initialized... | BMB1BE-FLI

communications port and the Baud rate are displayed in the caption (title)
of the TTY Window. If the currently selected port is invalid, this condition is
also reported in the caption. The Rigel boards use a default of rate of 9600
Baud. Make sure that the serial port you are using is not currently used by
another device (such as a serial mouse or a modem card), and that no
other peripheral device is competing for the same interrupt as the serial
port. You may review or modify the serial port parameters from the MS
Windows Control Panel.

Bootstrapping the Board

In the default configuration, all monitor programs are downloaded to the
boards after the boards are bootstrapped. That is, there is no ROM on the
board which is executed upon reset. Bootstrapping loads a small monitor,
called MinMon, which in turn loads a larger monitor RMON16x. Once the
monitor program is loaded, the monitor commands are available to the
user.

Open the TTY Window using the Main Menu command Tools | TTY.
Verify that the serial port selected is valid as reported in the caption of the
TTY Window. Now press the RESET button on the board. From the TTY
Window menu, select Bootstrap. When the board bootstraps, you may
press ENTER to view the monitor prompt. You may also press H (the
monitor Help command) to see a short list of available monitor commands.
Monitor Commands

The Reads monitors use single-letter commands to execute basic
functions. Port configurations and data, as well as memory inspection and
modifications may be accomplished by the monitor. Most of the single-
letter commands are followed by 4 hexadecimal digit addresses or 2
hexadecimal digit data bytes. The following is a list of the commands.
This list is also available by issuing the H command at the TTY Window.

36

READS COMMANDS

Cnn read port nn Configuration (DPnn)

C nn=mmmm set port nn Configuration (DPnn=mmmm)

D Download HEX file

G XXXX Go, execute code at XXXX

H Help, display this list

M XXXX Memory, contents of XXXX

M XXXX=nn Memory, change contents of XXXX to nn

M XXXX-YYYY=nn Memory, change block XXXX-YYYY to nn

P nn read Port nn (Pnn)

P nn=mmmm write to Port nn (Pnn=mmmm)

W XXXX Word memory, contents of XXXX

W XXXX=mmmm Word memory, change contents of XXXX to mmmm
W XXXX-YYYY=mmmm Word memory, change block XXXX-YYYY to mmmm

Downloading Programs

The board must be bootstrapped and the monitor program loaded before
programs may be downloaded to the board. At the monitor prompt, select
the TTY Window menu command Download | Download to RAM and
select the HEX file you wish to download.

Running programs

Before compiled programs are run, the board must be bootstrapped and
the monitor program downloaded. The compiled program must then be
downloaded to the board. Each compiled program has an origin. The
origin of assembly language programs are determined by the ORG pseudo
operation used in the source. The origin of C programs are written to the
Options | Compiler options dialog.

The monitor command G (go) followed by the address is used to run the
programs. For example, to run a program whose origin is at 4000h, type

G4000

11.2.5 Options

There are two types of "Options." Use the "Hardware Options" to select
the processor and the board you are using. This informs the READS166
environment which assembly and compile switches to invoke, as well as
which bootstrap and monitor programs to send to the boards.

37

|=| Hardware Options

Hardware =
Processor : ISAB-U GE7CR IEI ‘—I
[T Update [.ini] file now Help I

Board :

The READS166 assembler and the C compiler also have options which
may be set by commands under the "Options" menu.

|=-| C Compiler Options
-Code Generation ~Start / End
¥ wWord align chars [Stamt serial port [(A600]
[lgnore uncalled functions [T Return to Monitor
[*¥ Show compile warnings W ait states : Il] | :I
~Entry Points -Generate—— Registers —
[~ Start on RESET: [ASH file IFII]-FI? |:|
[RESET on hardware traps [XS5F file
HEX Fil
-Memory Map [hex] r e
Code origin : I-Ill]l]l]
Syztem stack zize - |1l]l]l] | Defaults I I oK I
Syztem stack basze : IBI][]I] | Help I | Cancel I

11.2.6 Help
This command invokes the READS166 Help system.

11.3 Using The Ra66, READS166 Assembler

Step 1. Writing an Assembly Language Program

Source code is entered using the Text Editor. Start the Text Editor from
the Main Menu using the Tools | Text Editor command. From the Text
Editor menu, create a new file by clicking on the File | New menu item.
You are now ready to type in your program.

Enter the following short program:
MONI TOR equ 0CO0Oh

CR equ 13
LF equ 10
org 4000h ; code starts at 4000h
nov ri, #nmsgHell o ; specify the string s address
calla cc_UC, print ; the subroutine print is in the
;o file
réeéutil.inc

38

jmpa cc_UC, MONITOR ; done -- return to the nonitor

#i ncl ude "r66util.inc"
EVEN
nmsgHel | o:

db CR, FL, "Hello Wrld", CR LF, O
EVEN

This program displays a string on the host. Most of the work is done by the
subroutine "print" which is in the include file R66UTIL.INC. This file is
included in to the source by the assembler directive "#include". Note that
the program starts at address 4000h and returns to the monitor located at
CO000h after execution.

After typing in your program, save it under the name "TUTOR.ASM".

Step 2. Assembling the program

Now that you have typed in TUTOR.ASM, you may assemble it. Use the
Main Menu Compile | Assemble file command. Provided that
TUTOR.ASM is in the active Text Editor window, it will be assembled. The
assembly results are displayed by a dialog.

Step 3. Detecting and correcting the errors

TUTOR.ASM will compile without errors if you did not make any
typographical errors in entering the code. You may wish to introduce a few
intentional errors to see how these errors are reported. For example,
change the line

nov rl, #nsgHello

to
xmov rl, #nsgHell o

or to
nov r100, #nsgHell o

Step 4. Running the program

When you assemble the program without errors, a HEX file is generated.
This file may now be downloaded the board and run. Open the TTY
Window using the Main Menu command Tools | TTY. Verify that the serial
port selected is valid as reported in the caption of the TTY Window. Now
press the RESET button on the board. From the TTY Window menu,
select Bootstrap. When the board bootstraps, you may press ENTER to
view the monitor prompt. You may also press H (the monitor Help
command) to see a short list of available monitor commands.

At the monitor prompt, select the TTY Window menu command Download
| Download to RAM and select the file TUTOR.HEX. The program is now
downloaded. Remember that the program had its origin at address 4000h.

39

From the monitor prompt issue the monitor G (go) command followed by
the address. That is, type

G4000
to branch to and execute the program.

11.4 Using The Rc66, READS166 C Compiler

Step 1. Writing a C language program

Source code is entered using the Text Editor. Start the Text Editor from
the Main Menu using the Tools | Text Editor command. From the Text
Editor menu, create a new file by clicking on the File | New menu item.
You are now ready to type in your program.

Enter the following short program:

/* ______________________ */
char *szMsg="Hello World !";
int *pSOTI C=0xFF6C, *pSO0TBUF=0xFEBO;

mai n(voi d) {
SendStr (szMsg);

voi d SendStr(char *sz){
whi | e(*sz) SendChar (*sz++);

voi d SendChar (char Ch){
*pSOTBUF=Ch;

whi | e(! (*pSOTI C&0x80)) ;
*pSOTI C=0;

This program displays a string on the host. Note that the string is sent to
the host by placing each character in to the transmit buffer of serial port O.
The function SendChar waits for the character to clear the transmit buffer
before returning. After typing in your program, save it under the name
"CTUTOR.C".

Step 2. Compiling the program

Before compiling CTUTOR.C, invoke the command Options | Compiler
options from the Main Menu. Click on the pushbutton titled "Defaults" to
select the default configuration. Notice that in the default configuration, the
code origin is placed at 4000h, and that the program returns to the monitor
after execution.

40

Next issue the Compile | C Compile file command from the Main Menu
and compile CTUTOR.C. A HEX file of the name CTUTOR.HEX will be
created.

Step 3. Detecting and correcting the errors

CTUTOR.C will compile without errors if you did not make any
typographical errors in entering the code. You may wish to introduce a few
intentional errors to see how these errors are reported. For example,
change the main function line

SendStr(szMsQ) ;

to
SendSt r (szMessage) ;

and recompile. Observe the errors generated by Rc66.

Step 4. Running the Compiled Program

When you compile the program without errors, a HEX file is generated.
This file may now be downloaded the board and run. Open the TTY
Window using the Main Menu command Tools | TTY. Verify that the serial
port selected is valid as reported in the caption of the TTY Window. Now
press the RESET button on the board. From the TTY Window menu,
select Bootstrap. When the board bootstraps, you may press ENTER to
view the monitor prompt. You may also press H (the monitor Help
command) to see a short list of available monitor commands.

At the monitor prompt, select the TTY Window menu command Download
| Download to RAM and select the file CTUTOR.HEX. The program is
now downloaded. Remember that the program had its origin at address
4000h. From the monitor prompt issue the monitor G (go) command
followed by the address. That is, type

G4000

to branch to and execute the program.

41

12. BILL OF MATERIALS

12.1 Parts List

QUANTITY PART DESIGNATORs
1 1nF CAPACITOR C10
1 10nF CAPACITOR C1
24 100nF CAPACITOR C2-9, C11-25
1 1uF CAPACITOR C26
4 2.2uF CAPACITOR C34-C37
1 22uF CAPACITOR Cc27
2 47uF CAPACITOR C29, C30
3 100uF CAPACITOR C33, C32, C31
1 1N4001 DIODE D5
1 1N4148 DIODE D1
1 1N5817 D4
4 LEDS D2,3,6,7
1 PN2907 Q2
1 PN2222 Q1
1 33Uh caoil L1
2 25x2 HEADER JP7, 8
2 DB 9 (short) P1, P2
2 PUSH BUTTON SW2, 3
4 2 HEADER JP10, 12, 13, HH
4 3 HEADER JP1, 2,
1 6 HEADER JP11
1 2X3 HEADER BTLDIS
1 2x4 HEADER JP3
1 TERM BLOCK JP9
1 SLIDE SWITCH SW2
1 10K GANG RESISTOR R3, R2
1 100 OHM RESISTOR R1
4 330 OHM RESISTOR R6, 7,10, 11
2 1K RESISTOR R4, 5
1 10K RESISTOR R12
1 2.2K RESISTOR R8
1 NOT USED R9
1 40 MEG Hz OSC Ul
1 SAB 88C166 U2
1 DS1233 U3
1 GAL22V10 15NS U4
2 M29F040 U5, 6
2 62256 LP U7, 8
1 LT1301 U9
1 MAX232CPE U10

42

12.2 Parts Cross Reference

OCoOoO~NOOOUIA,WNPE

Designator

C1
C2
C3
C4
C5
Co6
C7
C8
C9
C10
Cl1
C12
C13
Ci4
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
Cc27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
D1
D2
D3
D4

Component

10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
10nF
100nF
1uF
22uF
1nF
47uF
47uF
100uf
100uf
100uf
2.2uF
2.2uF
2.2uF
2.2uF
10nF
10nF
220uF
10nF
1N4148
BOOT LED
AUX LED
1N5817

Sheet Number

43

ODWWNOOOOOONNNNOODOOOOODUINNNOODOOOOODODOOOOOODOODOOOOO NN

Reference Sheet

R166FCPU.SCH
R166FMEM.SCH
R166FMEM.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FPIO.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FSER.SCH
R166FSER.SCH
R166FSER.SCH
R166FSER.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FCPU.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FVPP.SCH

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

D5
D6
D7
D8
JP1
JP2
JP3
JP4
JP5
JP6
JP7
JP8
JP9
JP10
JP11
JP12
JP13
L1
P1
P2

Q1

R1
R2E
R2D
R2C
R2B
R2A
R3D
R3C
R3B
R3A
R3E

R4

R5

R6

R7

R8

R9
R10
R11
R12
R13
R14
Swi1
SW2
SW3

Ul

U2

1N4001
PWR
PGM
BR
REF
GND
EBCOPT
CFGO
CFG1
BTLDIS
MEMORY
I/O PORTS
5V
VPPON
RS-232
ATXD
ARXD
33uH
HOST
S1
2N2222
PNP
100
10K
10K
10K
10K
10K
10K
10K
10K
10K
10K
1K
1K
390
390
2.2K
10K
330
330
10K
10K
10K
RESET
USER/MON
NMI
40MHz
SAB 88C166

NNOITWNDNNOODOOODODUITWWWWWWWWWNNDNNONOWNANONNANOOODUITOTW W WNNNOOO OO

R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FPIO.SCH
R166FPI10.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FSER.SCH
R166FSER.SCH
R166FSER.SCH
R166FVPP.SCH
R166FSER.SCH
R166FSER.SCH
R166FBTL.SCH
R166FVPP.SCH
R166FCPU.SCH
R166FVPP.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FBTL.SCH
R166FP10.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FVPP.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FCPU.SCH
R166FBTL.SCH
R166FPIO.SCH
R166FCPU.SCH
R166FCPU.SCH

88
89
90
91
92
93
94
95

U3
U4
us
U6
U7
us
U9
u10

DS1233
GAL22V10
M29F010
M29F010
62256
62256
LT1301
MAX232

45

~Noh~rhAbMAbowbdN

R166FCPU.SCH
R166FBTL.SCH
R166FMEM.SCH
R166FMEM.SCH
R166FMEM.SCH
R166FMEM.SCH
R166FVPP.SCH
R166FSER.SCH

13. TOP OVERLAY AND CIRCUIT DIAGRAMS

46

